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Part 1: Reminders



Maximization with Branch-and-Bound (Reminder)
• Basically Depth-First Search


• Procedure to derive an Upper Bound on the objective (UB)


• Prune sub-problem space whenever 

UB(σ) ≤ v*

A node from

the search tree

Value of the best known solution

(Note: This is a Lower Bound on the true optimum)
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UB(A) = 15
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Branch-and-Bound (Reminder)

A

Visually

v* = 15

B
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No, I can’t



Dynamic Programming (Reminder)

• Recursive Model (hence 2 steps)


• Base Case


• General Case
} Embodied in  

Bellman Recurrence Equations



Dynamic Programming (Reminder)
Knapsack Example

h0(c,0) = 0
h0(c,1) = p0 if  w0 ≤ c

= ⊥ otherwise

Base Case
hi(c,0) = max {hi−1(c,0), hi−1(c,1)}
hi(c,1) = pi + max { hi−1(c,0), hi−1(c − wi,1) } if  wi ≤ c

= ⊥ otherwise

Recurrence

max { hN(C,0), hN(C,1) }
Objective
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Dynamic Programming (Reminder)
Numerical Knapsack Example
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Decision Variables
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{
Decision Variables

x0 = x1 = x2 =

Domains 
D0 = D1 = D2 = {yes, no}
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State Spaces 
S0 = S1 = S2 = {0,1,…,15}
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Observation
Dynamic Program can be Seen as a Labeled Transition System (LTS)

• State Spaces


• Initial State


• Initial Value


• Transition Function


• Transition Cost Function



Labeled Transition System
(Refresher/Example:               )

Fill

Drink

Break



Labeled Transition System
(Refresher/Example:               )

Fill

Drink

Break

1st ingredient: set of states

Initial:  
Empty Full Terminal: 

Landfill



Labeled Transition System
(Refresher/Example:               ) 2nd ingredient: Labeled Transitions 

(hence the name !)
Fill

Drink

Break

Interested in TRACES of the  
automaton



Observation

• State Spaces


• Initial State


• Initial Value


• Transition Function


• Transition Cost Function

What is a state of the problem ? 
Knapsack: Remaining Capacity

Dynamic Program can be Seen as a Labeled Transition System (LTS)
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DP seen as a LTS — Formally

- Decision Variables:                

- Domains:                                 

- State Spaces :                         

- Initial State:                             

- Terminal State:                        

- Infeasible State:                     (irrecoverable !) 

- Transition Functions:             

- Transition Cost Function:      

- Initial Value:                           

x = {x0, x1, …, xn−1}
D = {D0, D1, …, Dn−1}
S = {S0, S1, …, Sn}
r ∈ S0  and  S0 = {r}
t ∈ Sn
⊥
τi : Si × Di → Si+1
hi : Si × Di → ℝ
vr

maximize  f(x) = vr +
n−1

∑
i=0

hi(si, xi)Objective

Characterization



- Decision Variables:                

- Domains:                                 

- State Spaces :                         

- Initial State:                             

- Terminal State:                        

- Infeasible State:                     (irrecoverable !) 

- Transition Functions:             

- Transition Cost Function:      

- Initial Value:                           

x = {x0, x1, …, xn−1}
D = {D0, D1, …, Dn−1}
S = {S0, S1, …, Sn}
r ∈ S0  and  S0 = {r}
t ∈ Sn
⊥
τi : Si × Di → Si+1
hi : Si × Di → ℝ
vr

DP SEEN AS A LABELED TRANSITION SYSTEM —> DD
maximize  f(x) = vr +

n−1

∑
i=0

hi(si, xi)Objective

Characterization

Edges



Part 2: Decision Diagrams



Decision Diagram 
Formal Definition

Layered automaton encoding sets of decision sequences. In that graph, a path 

between the source and a terminal node traverses one node from each layer 

of the graph. In this structure, the labels on the arcs connecting two nodes 

are interpreted as the assignment of a given value to a variable: the value 

being the label of the arc and the variable, the one associated to the layer


crossed by the arc.
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LONGEST PATH == BEST SOLUTION 



Problem
Some problems are just too hard to solve

DD is compact but it will not fit in a 

computer memory*

==> Solution: Control the size of the compiled DD

* Remember the TSP from the first lab on dynamic programming ? 



Controlling the Size of the Compiled DD
Impose a maximum width W on the DD

• No layer can hold more than W nodes


• Prevents the exponential growth of the DD

Two approaches
• Delete the less promising nodes when there are too many


• Merge the less promising nodes when there are too many

Very important



We will use both approaches
… and use them in the context of a Branch-and-Bound

Purpose of each method
• Delete the less promising nodes


• Merge the less promising nodes

Derive lower bound


Derive upper bound

Very important



First method

DELETE SOME NODES
Resulting DD is called  

RESTRICTED DECISION DIAGRAM 
and provides a  

LOWER BOUND

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0 WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0

9 12 15

12 120 0

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0

9 12

12 120

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0

9 12

12 120

9 0 12

1200 0

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0

9 12

12 120

9 0

1200

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



15

12 15

15 0

9 12

12 120

9 0

1200

t

WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120



WEIGHT: 3 
PROFIT: 15

WEIGHT: 3 
PROFIT: 12

WEIGHT: 12 
PROFIT: 120

15

0

9

12 12

9

0

15

12

15

12

0

0

120

t

LUCKILY THE LONGEST PATH 
IS STILL OPTIMAL, BUT IT IS NOT 
GUARANTEED (LOWER BOUND)



First Method
Restricted Decision Diagrams

• Some paths are missing from the DD


• Longest path is guaranteed to be a valid solution


• Longest path is not guaranteed to be the optimal solution (LOWER BOUND)

Sol(B) ⊆ Sol(P)
Formally

The set of all solutions encoded 
in the restricted DD  B

The set of all solutions  
to the problem



Second method

MERGE SOME NODES
Resulting DD is called  

RELAXED DECISION DIAGRAM 
and provides a  

UPPER BOUND
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Merge these 2 nodes 
Requires 2 operators 

  and    ⊕ (states) Γ(arc)
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LONGEST PATH MAY  
BE INFEASIBLE



Second Method
Relaxed Decision Diagrams

• Requires two additional operators to merge nodes  and relax arcs 


• Longest path is not guaranteed to be a valid solution


• Longest path is guaranteed to be at least as long as the optimal solution  
(UPPER BOUND)

⊕ Γ

Sol(B) ⊇ Sol(P)
Formally

The set of all solutions encoded 
in the restricted DD  B

The set of all solutions  
to the problem

There may be more paths in the DD than exists actual solutions 



Recap’
So far we have

• Restricted DD yield feasible solution (lower bound) 
                                          


• Relaxed DD yield (possibly) non-feasible solution (upper bound) 
                                          

Sol(ℬ) ⊆ Sol(𝒫)

Sol(ℬ) ⊇ Sol(𝒫)

Where do we go from there ?
Use these two ideas to derive a B-a-B framework that is able to find the longest 

path in the original MDD (that was to large to be build initially)

where Sol( ⋅ ) denotes the set of solutions, ℬ is a restricted DD, ℬ is a relaxed DD, and 𝒫 is the original problem



Algorithm Top Down Compilation of a bounded-width DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: a maximum layer width W
3: L0  {r}
4: for i 2 {0 . . . n� 1} do
5: for u 2 Li, d 2 Di do
6: u0  a node associated with state ⌧i(�(u), d)
7: if �(u0) 6= ? then
8: U  U [ {u0}
9: Li+1  Li+1 [ {u0}

10: a u
d�! u0

11: v(a) hi(�(u), d)
12: A A [ {a}
13: end if
14: end for

15: if |Li+1| > W then
16: Restrict or Relax the layer to get at most W nodes
17: end if

18: end for

C
om

pi
le

 b
ou
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 D
D
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Might be a subproblem



Algorithm Branch-And-Bound with DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: a node merging operator �
3: Input: an arc relaxation operator �
4: Create node r and add it to Fringe
5: x ?
6: v  �1
7: while Fringe is not empty do
8: u Fringe.pop()
9: B  Restricted(u)

10: if v⇤(B) > v then
11: v  v⇤(B)
12: x x⇤(B)
13: end if
14: if B is not exact then
15: B  Relaxed(u,�,�)
16: if v⇤(B) > v then
17: for all u0 2 B.exact cutset() do
18: Fringe.add(u0)
19: end for
20: end if
21: end if
22: end while
23: return (x, v)B

ra
nc

h-
an

d-
B

ou
nd



HUGE DD 
EXACT REPRESENTATION



Frontier 
of open  
subproblems

r



r
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RESTRICTED = 
LOWER BOUND
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LOWER BOUND

Does it improve the 
best known solution ?

1

Is it exact ?

2
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RELAXED = 
UPPER BOUND
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RELAXED = 
UPPER BOUND

Is it equal to the  
lower bound ?

1

Is it possibly better 
than the best LB ?

2



CHILDREN
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RESTRICTEDDoes it improve the 
best known solution ?

1

Is it exact ?

2



RELAXEDIs it equal to the  
lower bound ?

1

Is it possibly better 
than the best LB ?

2



CHILDREN



Repeat until frontier is empty…



How can we enumerate subproblems ?

Exact Cutset

A subset  of the exact nodes s.t. any  
path must go through at least one node in 

𝒞 r − t
𝒞
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AND RELAXED DD HAVE NOT DIVERGED



Exact Cutset
• There is always exists AT LEAST one exact cutset.


• The exact cutset is not guaranteed to be unique


• First Exact Layer (Traditional branching)


• Last Exact Layer (Deepest layer where all nodes are exact)


• Frontier Cutset (Set of all the direct parents of inexact nodes)
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Part 3: Code



Interfaces (Core)
LTS Semantics of a  
Dynamic Program

 Operator⊕

 OperatorΓ



Interfaces (Heuristics)

Discriminate promising from 
 other nodes

What is the maximum width 
for an MDD rooted in the  

subproblem with the given state ?

Order of the variables



Interfaces (Utils)



Interfaces (DD) The same DecisionDiagram object 
can be reused to compile different subproblems


(for performance reasons)

In practice, this interface is implemented for you:



Knapsack
Example










