
Xavier Gillard and Pierre Schaus

Branch-and-Bound with
Decision Diagrams
LSINF2266 - Advanced Algorithms for Optimization

Part 1: Reminders

Maximization with Branch-and-Bound (Reminder)
• Basically Depth-First Search

• Procedure to derive an Upper Bound on the objective (UB)

• Prune sub-problem space whenever

UB(σ) ≤ v*

A node from

the search tree

Value of the best known solution

(Note: This is a Lower Bound on the true optimum)

Branch-and-Bound (Reminder)

A

Visually

v* = − ∞ Can I do better than ? v*

UB(A) = 15

Branch-and-Bound (Reminder)

A

Visually

v* = − ∞

Can I do better than ? v* B

7
UB(A) = 15

UB(B) = 15

Branch-and-Bound (Reminder)

A

Visually

v* = − ∞

B

C

I have reached a new solution (10)
Is it better than ? v*

3

7
UB(A) = 15

UB(B) = 15

Branch-and-Bound (Reminder)

A

Visually

v* = 10

B

C

3

7
UB(A) = 15

UB(B) = 15

V = 10

Branch-and-Bound (Reminder)

A

Visually

v* = 10

B

C

3

7
UB(A) = 15

UB(B) = 15

V = 10

Can I do better than ? v*

Branch-and-Bound (Reminder)

A

Visually

v* = 10

B

C

3

7
UB(A) = 15

UB(B) = 15

V = 10 D V = 15

8

I have reached a new solution (15)
Is it better than ? v*

Branch-and-Bound (Reminder)

A

Visually

v* = 15

B

C

3

7
UB(A) = 15

UB(B) = 15

V = 10 D V = 15

8

Can I do better than ? v*

Branch-and-Bound (Reminder)

A

Visually

v* = 15

B

C

3

7
UB(A) = 15

UB(B) = 15

V = 10 D V = 15

8

No, I can’t

Dynamic Programming (Reminder)

• Recursive Model (hence 2 steps)

• Base Case

• General Case
} Embodied in  

Bellman Recurrence Equations

Dynamic Programming (Reminder)
Knapsack Example

h0(c,0) = 0
h0(c,1) = p0 if w0 ≤ c

= ⊥ otherwise

Base Case
hi(c,0) = max {hi−1(c,0), hi−1(c,1)}
hi(c,1) = pi + max { hi−1(c,0), hi−1(c − wi,1) } if wi ≤ c

= ⊥ otherwise

Recurrence

max { hN(C,0), hN(C,1) }
Objective

Dynamic Programming (Reminder)
Knapsack Example

h0(c,0) = 0
h0(c,1) = p0 if w0 ≤ C

= ⊥ otherwise

Base Case
hi(c,0) = max {hi−1(C,0), hi−1(C,1)}
hi(c,1) = pi + max { hi−1(c,0), hi−1(c − wi,1) } if w0 ≤ C

= ⊥ otherwise

Recurrence

max { hN(C,0), hN(C,1) }
Objective

Dynamic Programming (Reminder)
Knapsack Example

h0(c,0) = 0
h0(c,1) = p0 if w0 ≤ C

= ⊥ otherwise

Base Case
hi(c,0) = max {hi−1(C,0), hi−1(C,1)}
hi(c,1) = pi + max { hi−1(c,0), hi−1(c − wi,1) } if w0 ≤ C

= ⊥ otherwise

Recurrence

max { hN(C,0), hN(C,1) }
Objective

Dynamic Programming (Reminder)
Knapsack Example

h0(c,0) = 0
h0(c,1) = p0 if w0 ≤ C

= ⊥ otherwise

Base Case
hi(c,0) = max {hi−1(C,0), hi−1(C,1)}
hi(c,1) = pi + max { hi−1(c,0), hi−1(c − wi,1) } if w0 ≤ C

= ⊥ otherwise

Recurrence

max { hN(C,0), hN(C,1) }
Objective

Dynamic Programming (Reminder)
Numerical Knapsack Example

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

CAPACITY: 15

15

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

{
Decision Variables

x0 = x1 = x2 =
WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

{
Decision Variables

x0 = x1 = x2 =

Domains
D0 = D1 = D2 = {yes, no}

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

State Spaces
S0 = S1 = S2 = {0,1,…,15}

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

NoYes
15 0 WEIGHT: 3

PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15⊥
120 120 1200 0 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15⊥
120 120 1200 0 0

Infeasible State
(Omitted)

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

Not a Search Tree
WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

Observation
Dynamic Program can be Seen as a Labeled Transition System (LTS)

• State Spaces

• Initial State

• Initial Value

• Transition Function

• Transition Cost Function

Labeled Transition System
(Refresher/Example:)

Fill

Drink

Break

Labeled Transition System
(Refresher/Example:)

Fill

Drink

Break

1st ingredient: set of states

Initial:  
Empty Full Terminal: 

Landfill

Labeled Transition System
(Refresher/Example:) 2nd ingredient: Labeled Transitions 

(hence the name !)
Fill

Drink

Break

Interested in TRACES of the  
automaton

Observation

• State Spaces

• Initial State

• Initial Value

• Transition Function

• Transition Cost Function

What is a state of the problem ?
Knapsack: Remaining Capacity

Dynamic Program can be Seen as a Labeled Transition System (LTS)

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

15Initial State = 15 
Initial Value = 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

15 0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

15

Transition Function

12

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

15

Transition Cost Function

12

15

DP seen as a LTS — Formally

- Decision Variables:

- Domains:

- State Spaces :

- Initial State:

- Terminal State:

- Infeasible State: (irrecoverable !)

- Transition Functions:

- Transition Cost Function:

- Initial Value:

x = {x0, x1, …, xn−1}
D = {D0, D1, …, Dn−1}
S = {S0, S1, …, Sn}
r ∈ S0 and S0 = {r}
t ∈ Sn
⊥
τi : Si × Di → Si+1
hi : Si × Di → ℝ
vr

maximize f(x) = vr +
n−1

∑
i=0

hi(si, xi)Objective

Characterization

- Decision Variables:

- Domains:

- State Spaces :

- Initial State:

- Terminal State:

- Infeasible State: (irrecoverable !)

- Transition Functions:

- Transition Cost Function:

- Initial Value:

x = {x0, x1, …, xn−1}
D = {D0, D1, …, Dn−1}
S = {S0, S1, …, Sn}
r ∈ S0 and S0 = {r}
t ∈ Sn
⊥
τi : Si × Di → Si+1
hi : Si × Di → ℝ
vr

DP SEEN AS A LABELED TRANSITION SYSTEM —> DD
maximize f(x) = vr +

n−1

∑
i=0

hi(si, xi)Objective

Characterization

Edges

Part 2: Decision Diagrams

Decision Diagram
Formal Definition

Layered automaton encoding sets of decision sequences. In that graph, a path

between the source and a terminal node traverses one node from each layer

of the graph. In this structure, the labels on the arcs connecting two nodes

are interpreted as the assignment of a given value to a variable: the value

being the label of the arc and the variable, the one associated to the layer

crossed by the arc.

15

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

9 0 12 3 15

120 1200 0 0

t Terminal State

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

0

9 15

12 12 0

9 12 3 15

1200 0 0

15

12

15

12

0

0

120

t

LONGEST PATH == BEST SOLUTION

Problem
Some problems are just too hard to solve

DD is compact but it will not fit in a

computer memory*

==> Solution: Control the size of the compiled DD

* Remember the TSP from the first lab on dynamic programming ?

Controlling the Size of the Compiled DD
Impose a maximum width W on the DD

• No layer can hold more than W nodes

• Prevents the exponential growth of the DD

Two approaches
• Delete the less promising nodes when there are too many

• Merge the less promising nodes when there are too many

Very important

We will use both approaches
… and use them in the context of a Branch-and-Bound

Purpose of each method
• Delete the less promising nodes

• Merge the less promising nodes

Derive lower bound

Derive upper bound

Very important

First method

DELETE SOME NODES
Resulting DD is called

RESTRICTED DECISION DIAGRAM
and provides a

LOWER BOUND

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0 WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12

12 120

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12

12 120

9 0 12

1200 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12

12 120

9 0

1200

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12

12 120

9 0

1200

t

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

0

9

12 12

9

0

15

12

15

12

0

0

120

t

LUCKILY THE LONGEST PATH
IS STILL OPTIMAL, BUT IT IS NOT
GUARANTEED (LOWER BOUND)

First Method
Restricted Decision Diagrams

• Some paths are missing from the DD

• Longest path is guaranteed to be a valid solution

• Longest path is not guaranteed to be the optimal solution (LOWER BOUND)

Sol(B) ⊆ Sol(P)
Formally

The set of all solutions encoded
in the restricted DD B

The set of all solutions  
to the problem

Second method

MERGE SOME NODES
Resulting DD is called

RELAXED DECISION DIAGRAM
and provides a

UPPER BOUND

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0 WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

9 12 15

12 120 0

Merge these 2 nodes
Requires 2 operators

 and ⊕ (states) Γ(arc)

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

12 15

12 120 0

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

12 15

12 120 0

0 3 15

120 1200 0

12

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

12 15

12 120 0

0 3 15

120 1200 0

12

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

12 15

12 120 0

15

120 1200 0

12

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

12 15

15 0

12 15

12 120 0

15

120 1200 0

12

t

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

WEIGHT: 3
PROFIT: 15

WEIGHT: 3
PROFIT: 12

WEIGHT: 12
PROFIT: 120

15

0

15

120 0

15

1200 0

15

12

15

12

12

120

12

t

LONGEST PATH MAY
BE INFEASIBLE

Second Method
Relaxed Decision Diagrams

• Requires two additional operators to merge nodes and relax arcs

• Longest path is not guaranteed to be a valid solution

• Longest path is guaranteed to be at least as long as the optimal solution  
(UPPER BOUND)

⊕ Γ

Sol(B) ⊇ Sol(P)
Formally

The set of all solutions encoded
in the restricted DD B

The set of all solutions  
to the problem

There may be more paths in the DD than exists actual solutions

Recap’
So far we have

• Restricted DD yield feasible solution (lower bound) 

• Relaxed DD yield (possibly) non-feasible solution (upper bound) 

Sol(ℬ) ⊆ Sol(𝒫)

Sol(ℬ) ⊇ Sol(𝒫)

Where do we go from there ?
Use these two ideas to derive a B-a-B framework that is able to find the longest

path in the original MDD (that was to large to be build initially)

where Sol(⋅) denotes the set of solutions, ℬ is a restricted DD, ℬ is a relaxed DD, and 𝒫 is the original problem

Algorithm Top Down Compilation of a bounded-width DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: a maximum layer width W
3: L0 {r}
4: for i 2 {0 . . . n� 1} do
5: for u 2 Li, d 2 Di do
6: u0 a node associated with state ⌧i(�(u), d)
7: if �(u0) 6= ? then
8: U U [{u0}
9: Li+1 Li+1 [{u0}

10: a u
d�! u0

11: v(a) hi(�(u), d)
12: A A [{a}
13: end if
14: end for

15: if |Li+1| > W then
16: Restrict or Relax the layer to get at most W nodes
17: end if

18: end for

C
om

pi
le

 b
ou

nd
ed

 D
D

Algorithm Top Down Compilation of a bounded-width DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: a maximum layer width W
3: L0 {r}
4: for i 2 {0 . . . n� 1} do
5: for u 2 Li, d 2 Di do
6: u0 a node associated with state ⌧i(�(u), d)
7: if �(u0) 6= ? then
8: U U [{u0}
9: Li+1 Li+1 [{u0}

10: a u
d�! u0

11: v(a) hi(�(u), d)
12: A A [{a}
13: end if
14: end for

15: if |Li+1| > W then
16: Restrict or Relax the layer to get at most W nodes
17: end if

18: end for

C
om

pi
le

 b
ou

nd
ed

 D
D

Might be a subproblem

Algorithm Branch-And-Bound with DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: a node merging operator �
3: Input: an arc relaxation operator �
4: Create node r and add it to Fringe
5: x ?
6: v �1
7: while Fringe is not empty do
8: u Fringe.pop()
9: B Restricted(u)

10: if v⇤(B) > v then
11: v v⇤(B)
12: x x⇤(B)
13: end if
14: if B is not exact then
15: B Relaxed(u,�,�)
16: if v⇤(B) > v then
17: for all u0 2 B.exact cutset() do
18: Fringe.add(u0)
19: end for
20: end if
21: end if
22: end while
23: return (x, v)B

ra
nc

h-
an

d-
B

ou
nd

HUGE DD
EXACT REPRESENTATION

Frontier 
of open  
subproblems

r

r

r

RESTRICTED =
LOWER BOUND

r

RESTRICTED =
LOWER BOUND

Does it improve the
best known solution ?

1

Is it exact ?

2

r

RELAXED =
UPPER BOUND

r

RELAXED =
UPPER BOUND

Is it equal to the
lower bound ?

1

Is it possibly better
than the best LB ?

2

CHILDREN

RESTRICTED

RESTRICTEDDoes it improve the
best known solution ?

1

Is it exact ?

2

RELAXEDIs it equal to the
lower bound ?

1

Is it possibly better
than the best LB ?

2

CHILDREN

Repeat until frontier is empty…

How can we enumerate subproblems ?

Exact Cutset

A subset of the exact nodes s.t. any
path must go through at least one node in

𝒞 r − t
𝒞

12

12

120

12

t

15

120 0

15

1200 0

15

0

15

12

15

FRONTIER UP TO WHICH THE EXACT
AND RELAXED DD HAVE NOT DIVERGED

Exact Cutset
• There is always exists AT LEAST one exact cutset.

• The exact cutset is not guaranteed to be unique

• First Exact Layer (Traditional branching)

• Last Exact Layer (Deepest layer where all nodes are exact)

• Frontier Cutset (Set of all the direct parents of inexact nodes)

12

12

120

12

t

120

1200

15

0

15

0

15

0

15

12

15

12

12

120

12

t

120

1200

0

15

0

15

0

15

15

1512

Last Exact Layer Cutset

12

12

120

12

t

120

1200

0

0

15

0

15

15

15

15

12

Frontier cutset

Part 3: Code

Interfaces (Core)
LTS Semantics of a  
Dynamic Program

 Operator⊕

 OperatorΓ

Interfaces (Heuristics)

Discriminate promising from 
 other nodes

What is the maximum width 
for an MDD rooted in the  

subproblem with the given state ?

Order of the variables

Interfaces (Utils)

Interfaces (DD) The same DecisionDiagram object 
can be reused to compile different subproblems

(for performance reasons)

In practice, this interface is implemented for you:

Knapsack
Example

