Branch-and-Bound with Decision Diagrams LSINF2266 - Advanced Algorithms for Optimization

Xavier Gillard and Pierre Schaus

Part 1: Reminders

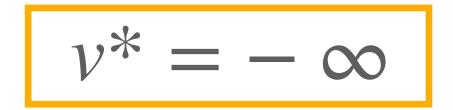
Maximization with Branch-and-Bound (Reminder)

- Basically **Depth-First Search**
- Procedure to derive an Upper Bound on the objective (UB)
- Prune sub-problem space whenever

A node from the search tree

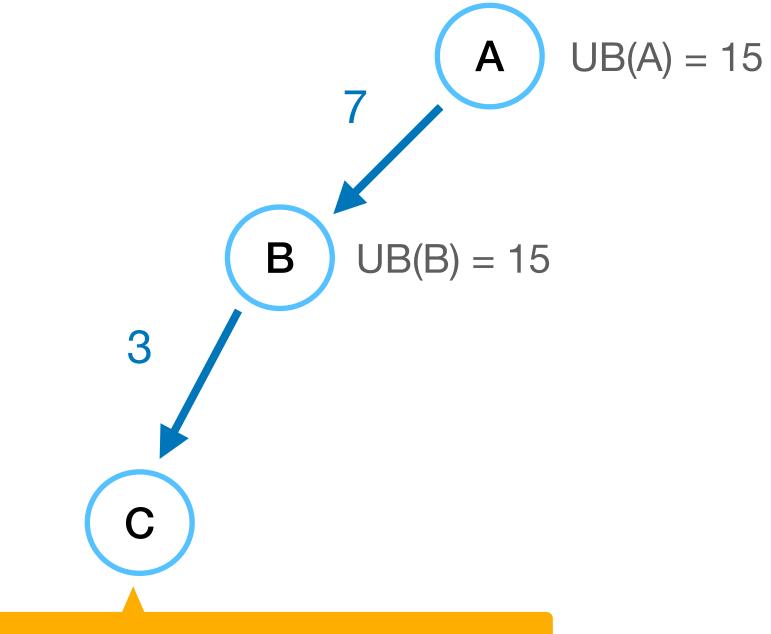
 $UB(\sigma) \leq v^*$ Value of the best known solution (Note: This is a Lower Bound on the true optimum)

Α

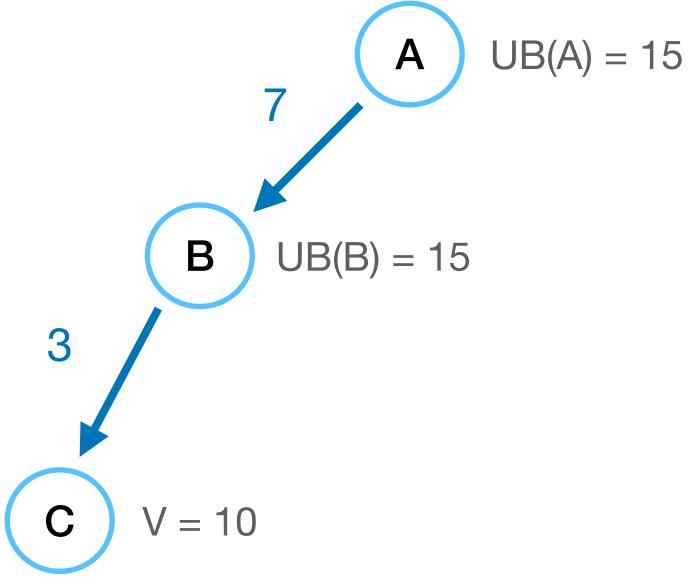


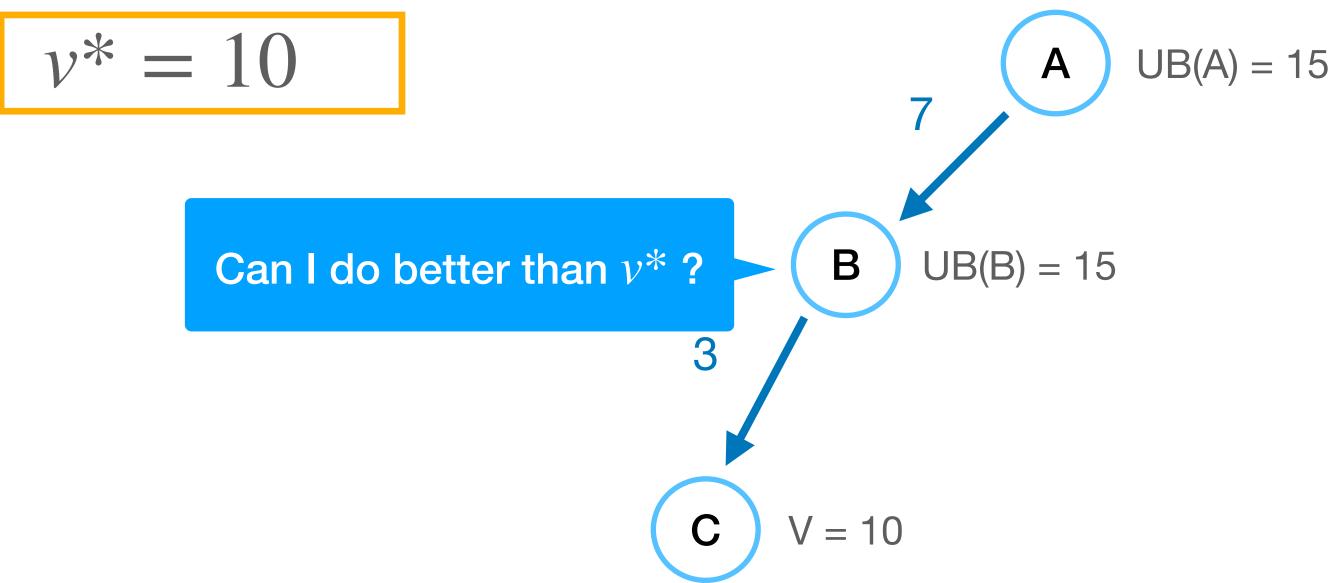
Can I do better than v^* ?

UB(A) = 15

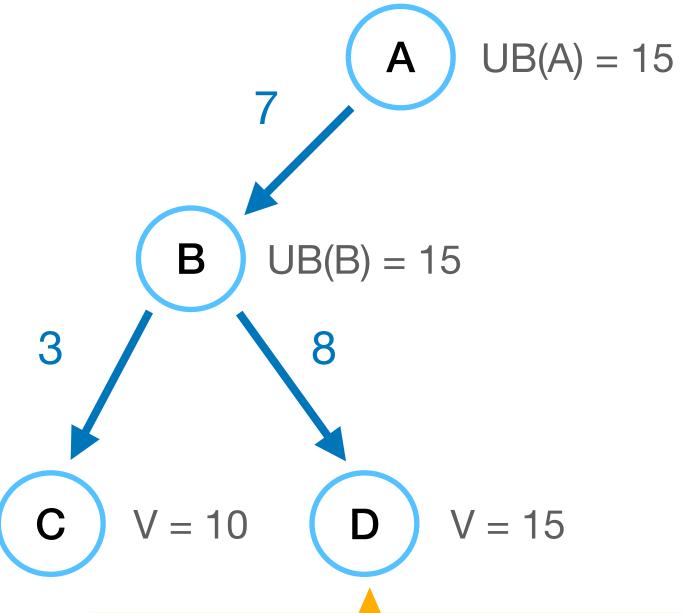


I have reached a new solution (10) Is it better than v^* ?

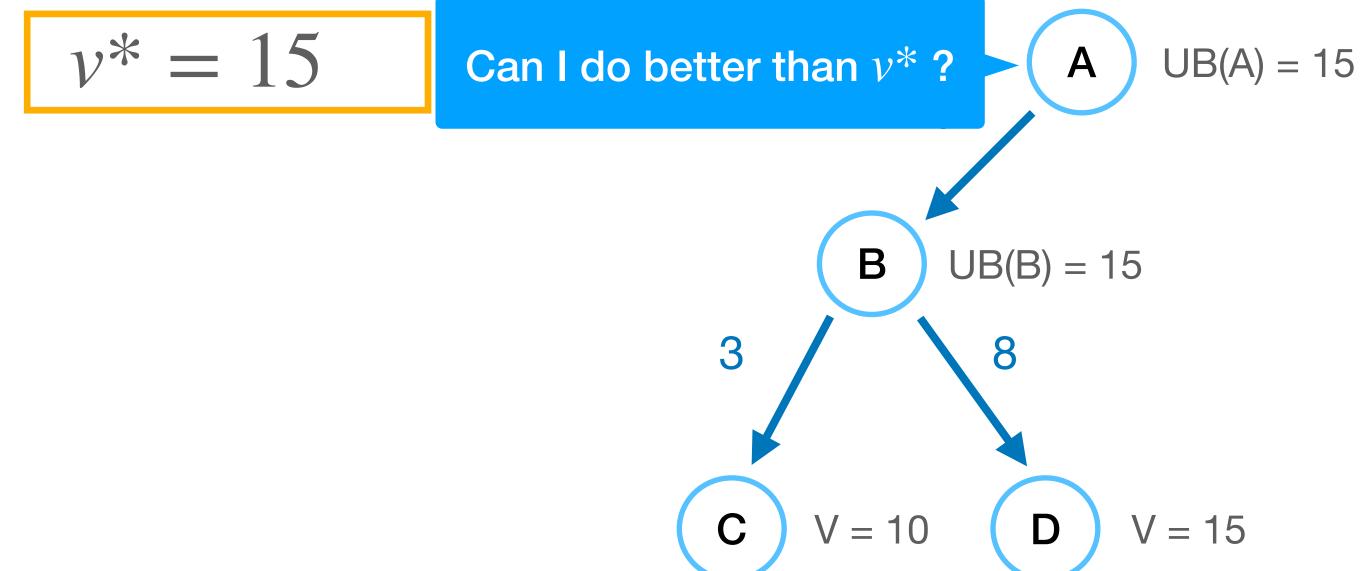


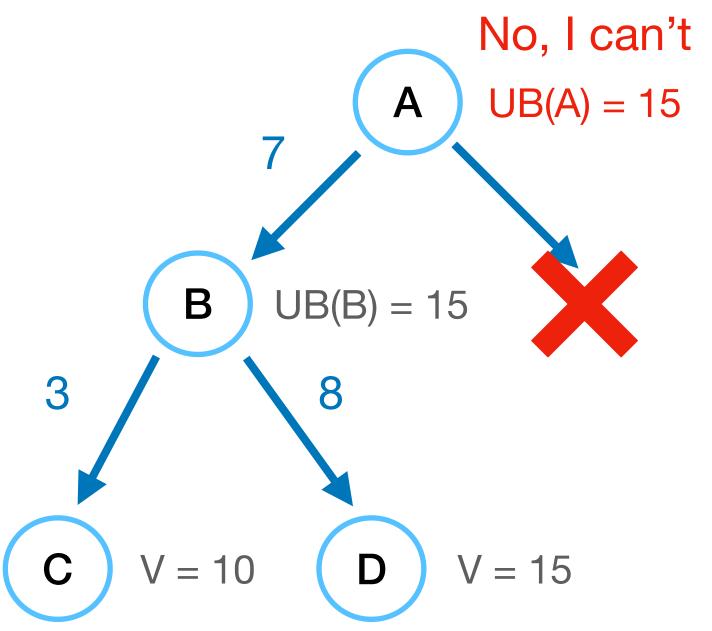






I have reached a new solution (15) Is it better than v^* ?





Dynamic Programming (Reminder)

- Recursive Model (hence 2 steps)
 - Base Case
 - General Case

Embodied in Bellman Recurrence Equations

Dynamic Programming (Reminder) Knapsack Example

Base Case $h_0(c,0) = 0$ $h_0(c,1) = p_0$ if $w_0 \le c$ $= \bot$ otherwise

 $h_i(c,0)$ $h_i(c,1)$

Objective

 $\max \{ h_N(C,0), h_N(C,1) \}$

Recurrence

$$= \max \{ h_{i-1}(c,0), h_{i-1}(c,1) \}$$

= $p_i + \max \{ h_{i-1}(c,0), h_{i-1}(c - w_i,1) \}$ if $w_i \le c$
= \bot otherwise

Dynamic Programming (Reminder) Knapsack Example



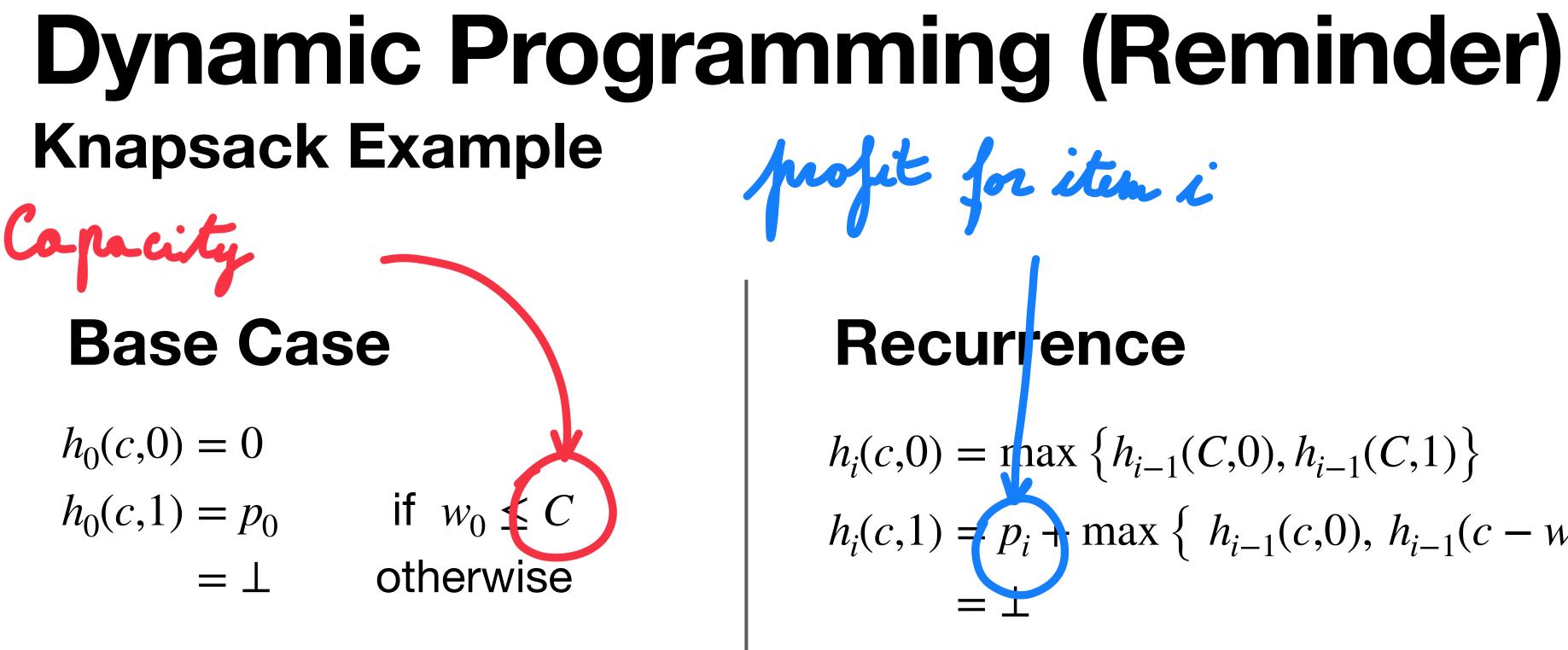
Objective

 $\max \{ h_N(C,0), h_N(C,1) \}$

Recurrence

$$= \max \left\{ h_{i-1}(C,0), h_{i-1}(C,1) \right\}$$

= $p_i + \max \left\{ h_{i-1}(c,0), h_{i-1}(c - w_i,1) \right\}$ if $w_0 \le C$
= \bot otherwise

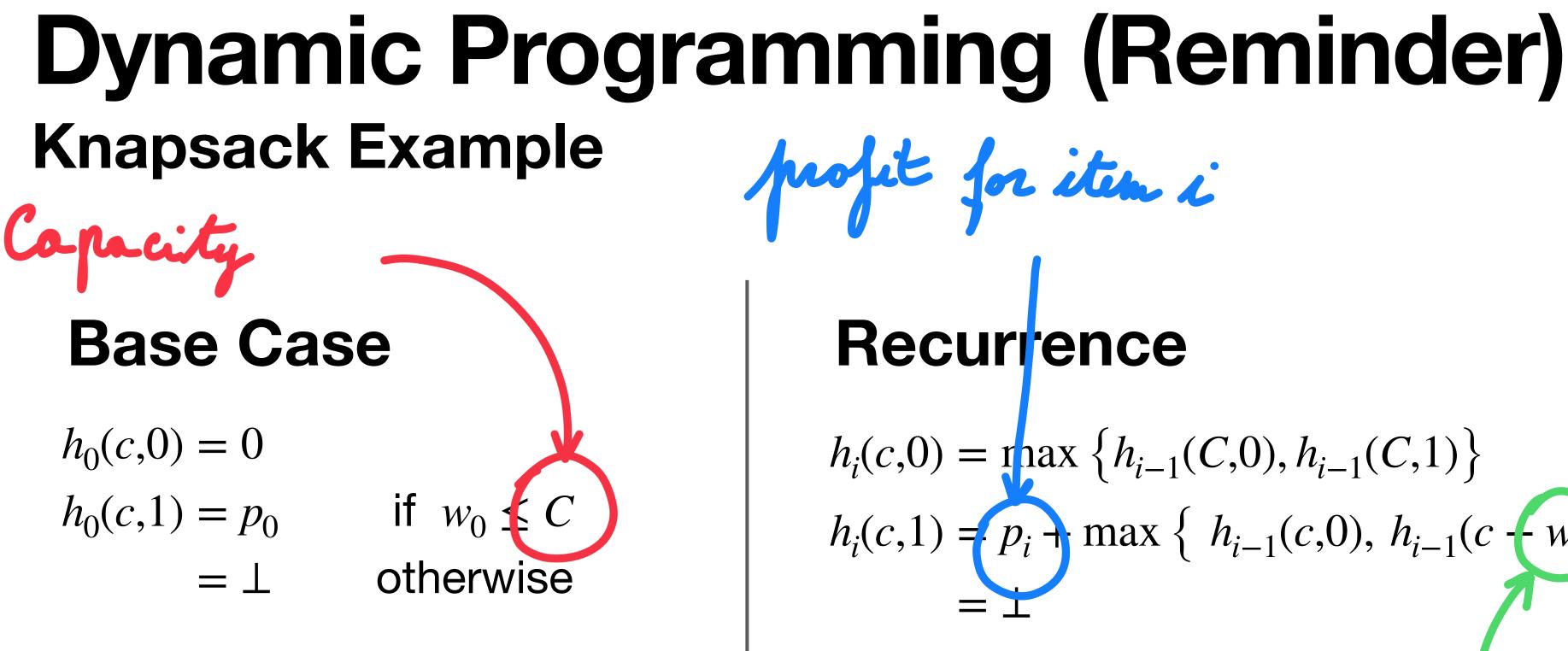


Objective

 $\max \{ h_N(C,0), h_N(C,1) \}$

projit for iten i Recurrence $h_{i}(c,0) = \max \left\{ h_{i-1}(C,0), h_{i-1}(C,1) \right\}$ $h_{i}(c,1) = p_{i} - \max \left\{ h_{i-1}(c,0), h_{i-1}(c-w_{i},1) \right\}$

if $w_0 \leq C$ otherwise



Objective

 $\max \{ h_N(C,0), h_N(C,1) \}$

projit for iten i Recurrence $h_{i}(c,0) = \max \left\{ h_{i-1}(C,0), h_{i-1}(C,1) \right\}$ $h_{i}(c,1) = p_{i} + \max \left\{ h_{i-1}(c,0), h_{i-1}(c-w_{i},1) \right\}$ Weight of iten i

if $w_0 \leq C$ otherwise

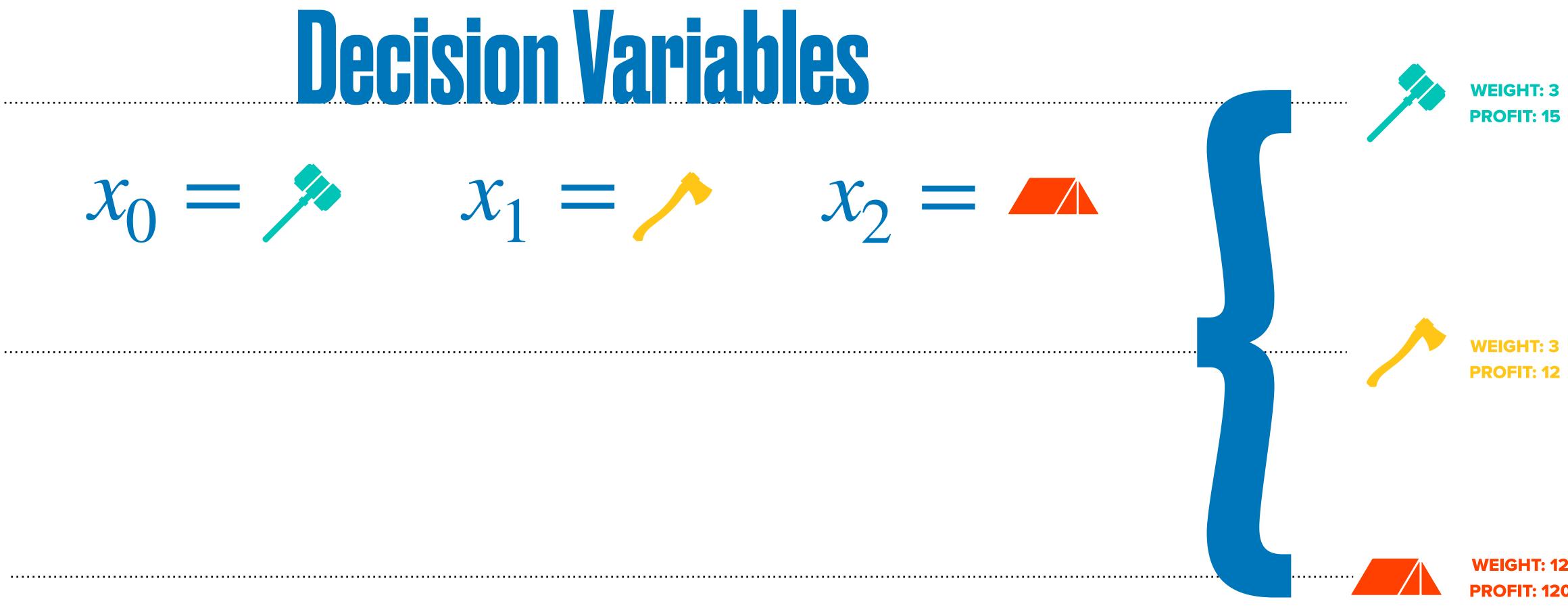
Dynamic Programming (Reminder) Numerical Knapsack Example

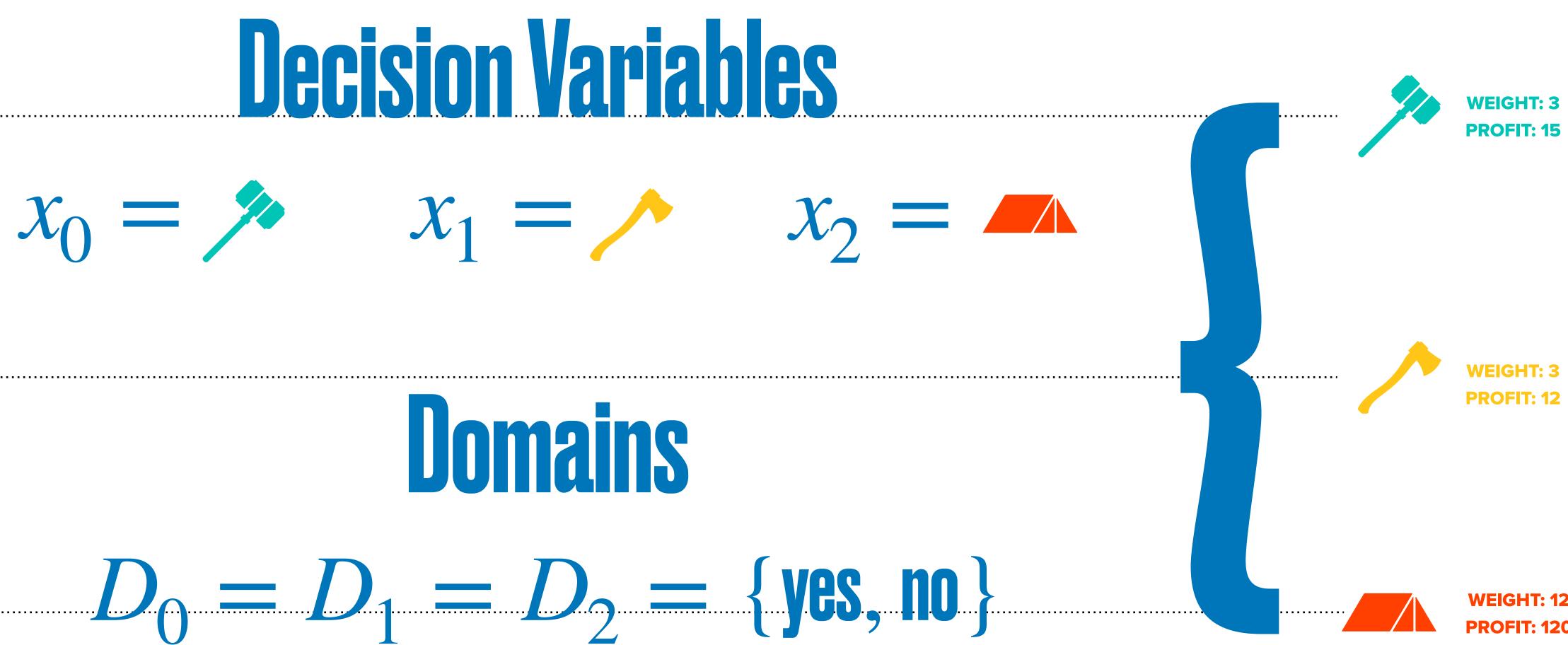
WEIGHT: 3 PROFIT: 15

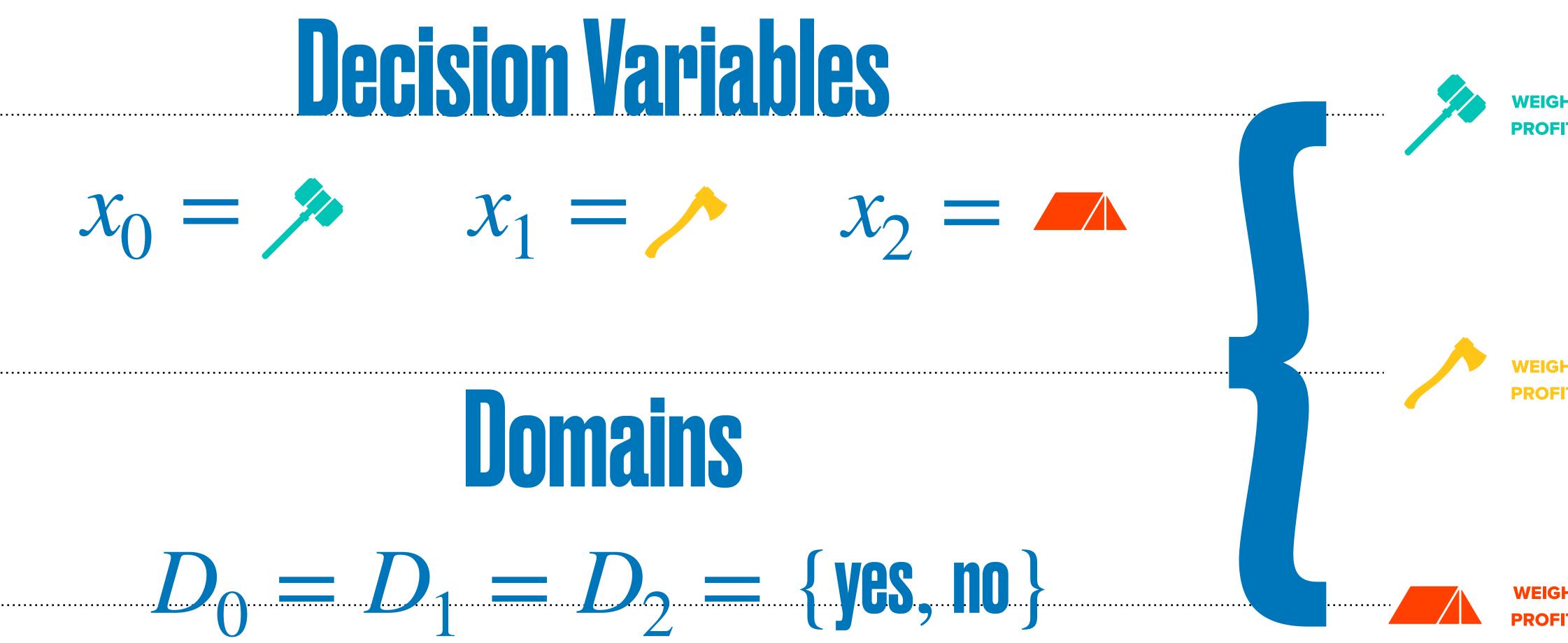
WEIGHT: 12 PROFIT: 120

CAPACITY: 15

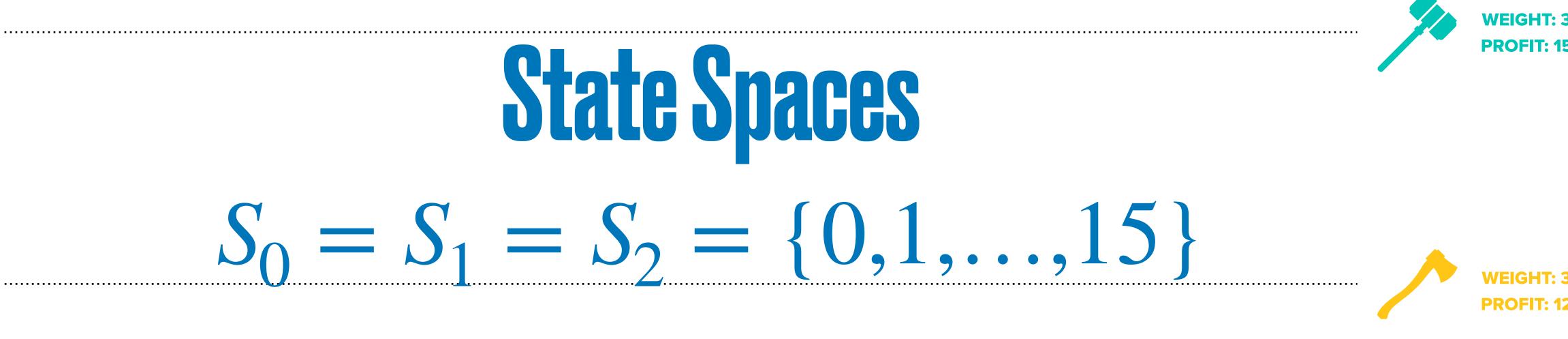


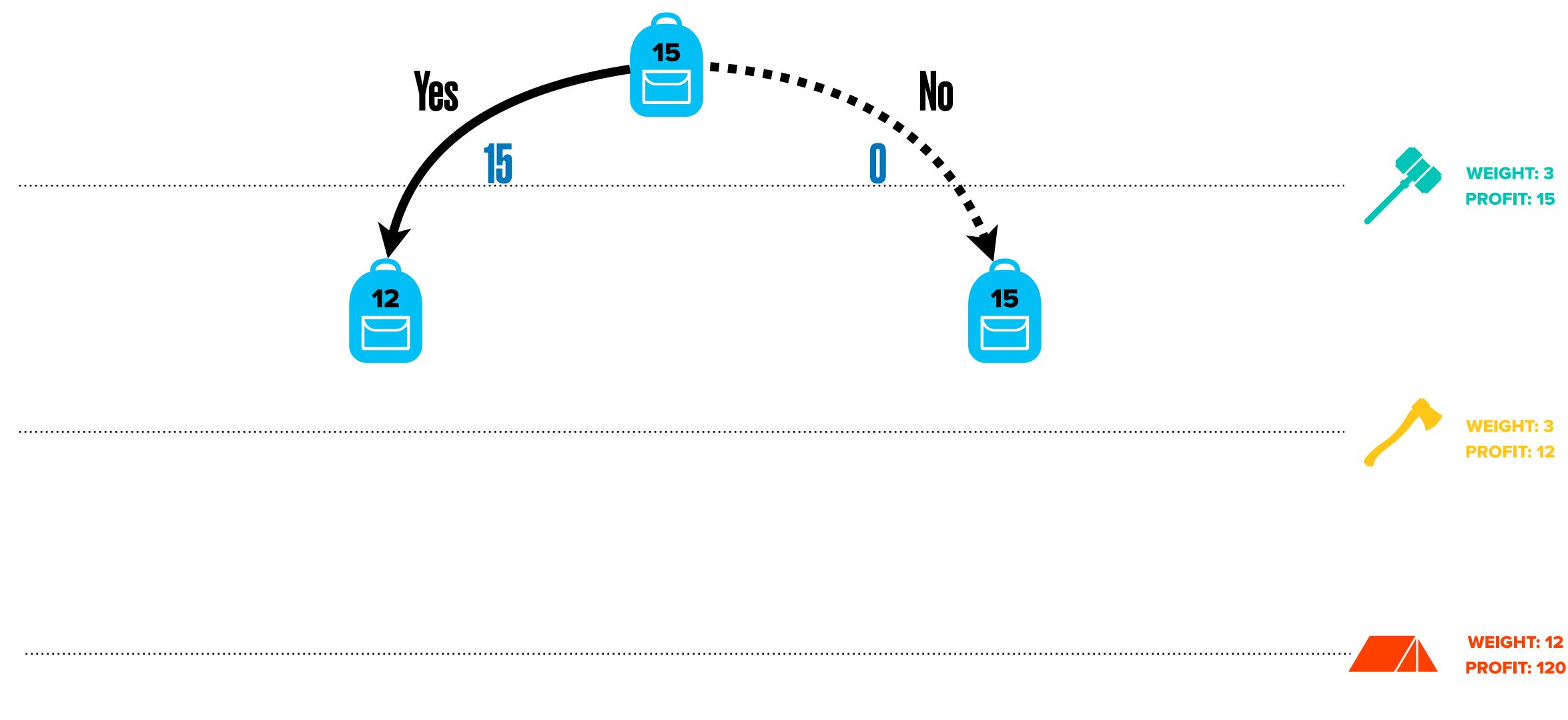


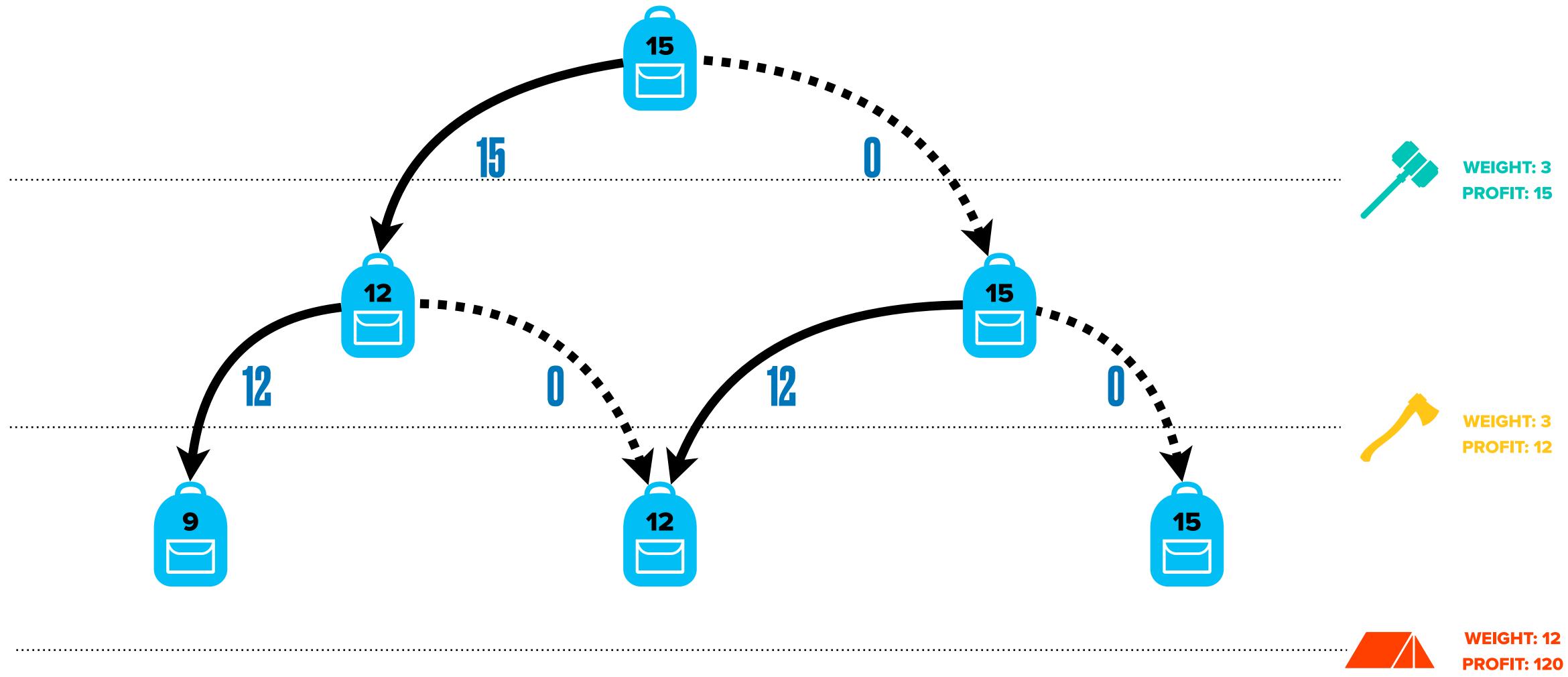


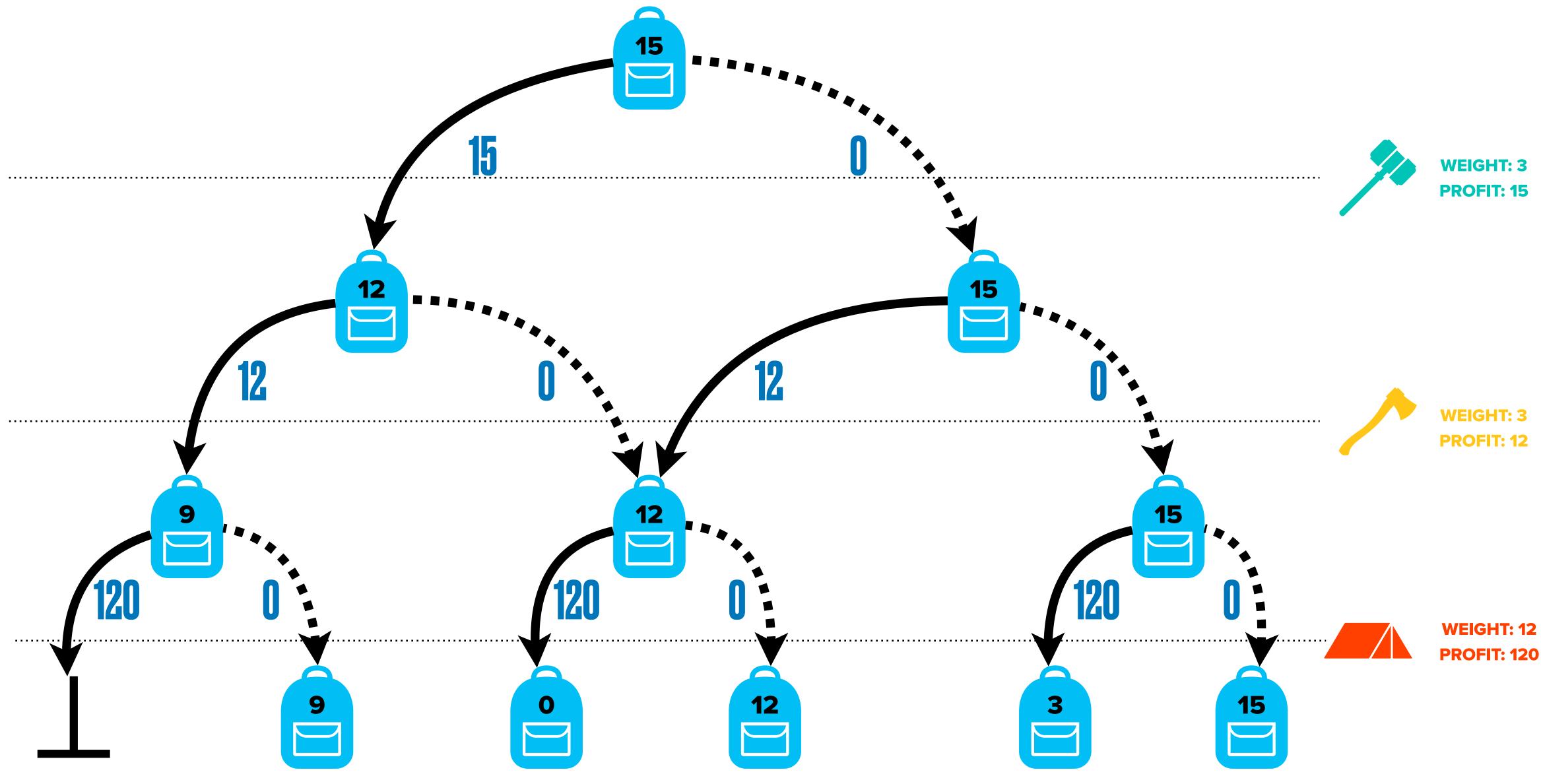


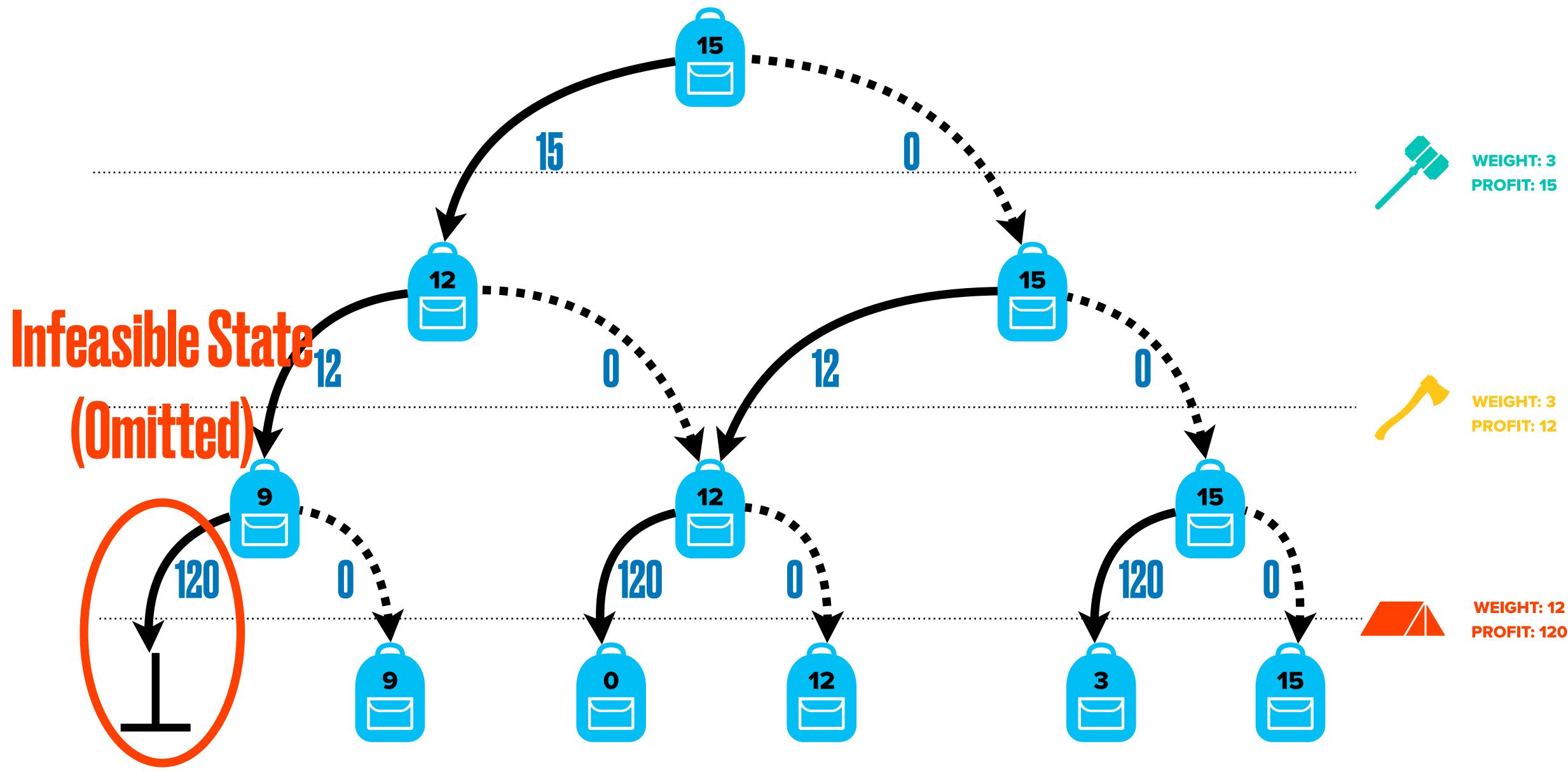
State Spaces $S_0 = S_1 = S_2 = \{0, 1, \dots, 15\}$

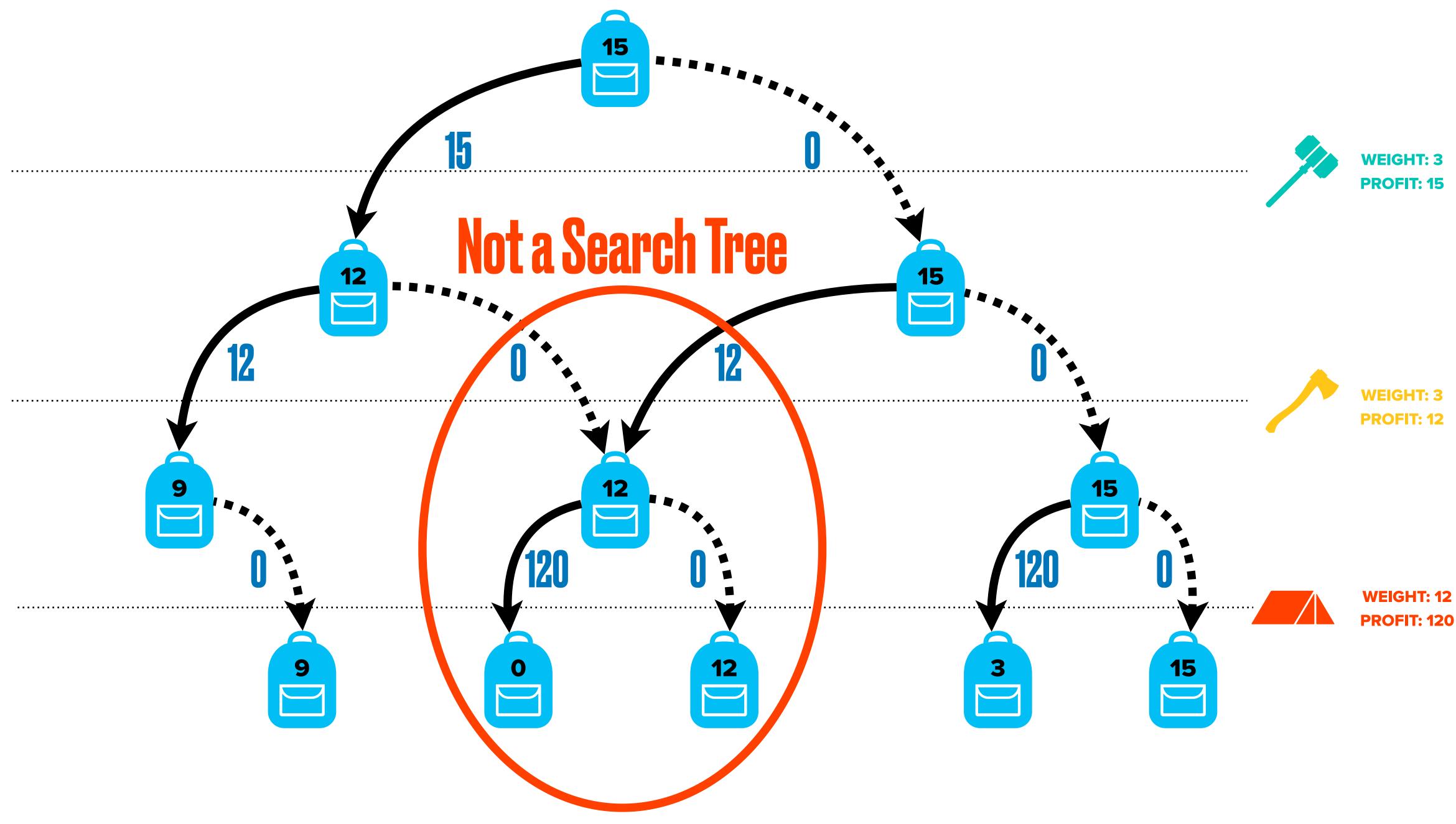








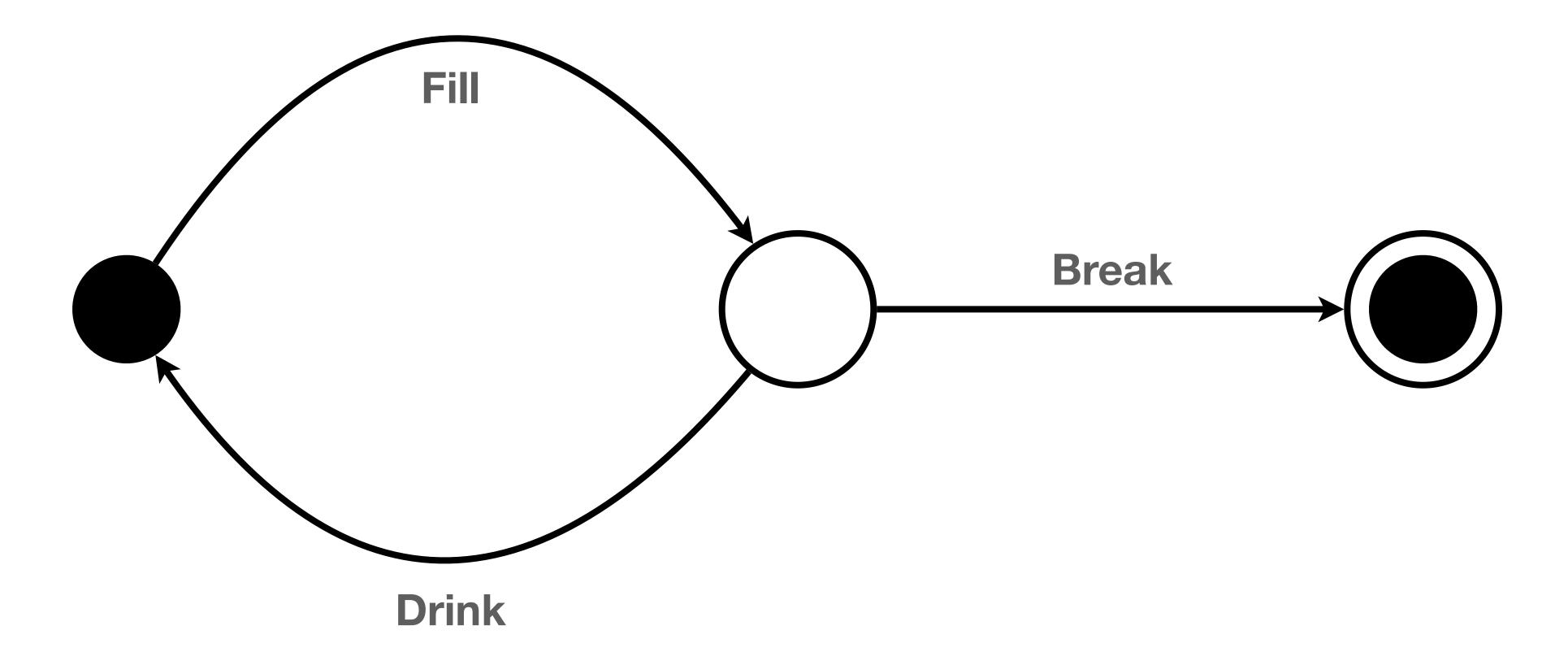




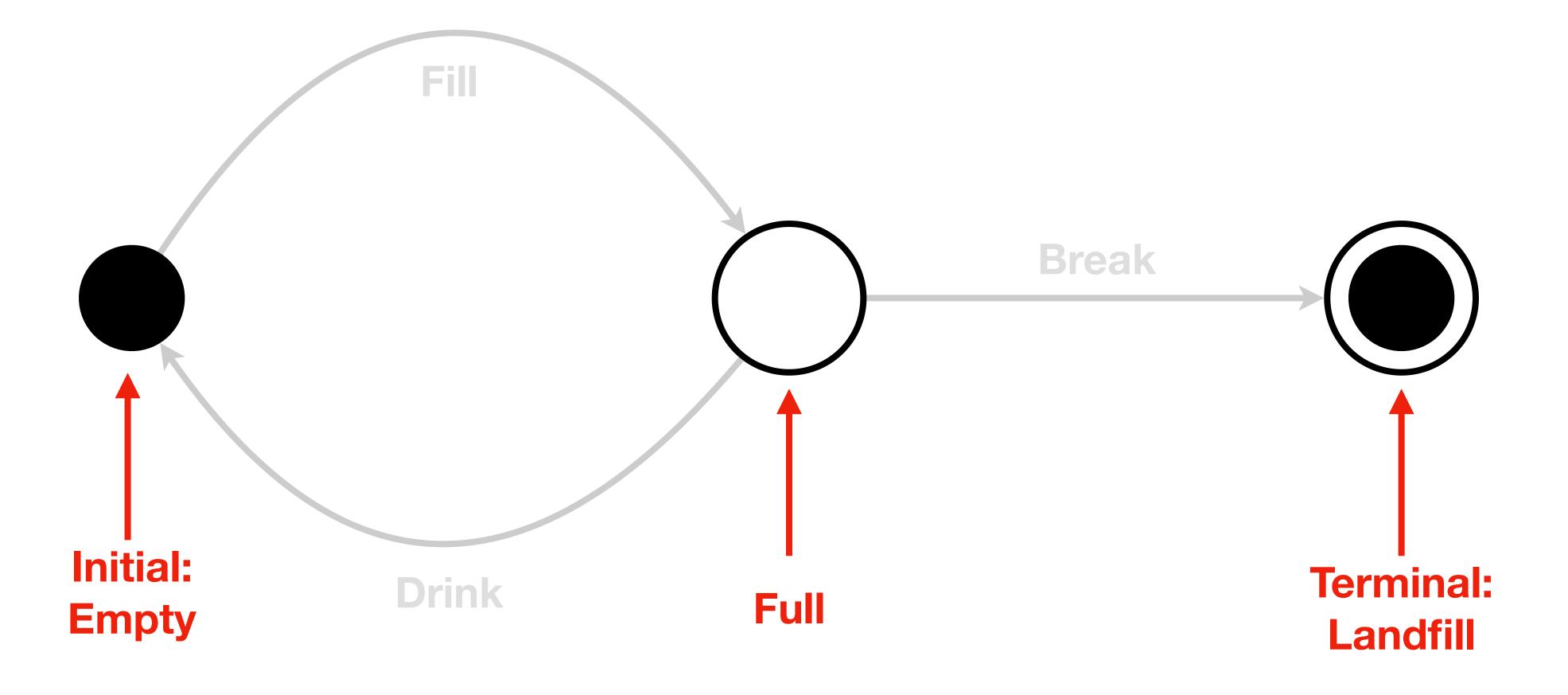
Observation Dynamic Program can be Seen as a Labeled Transition System (LTS)

- State Spaces
- Initial State \bullet
- Initial Value
- Transition Function
- Transition Cost Function

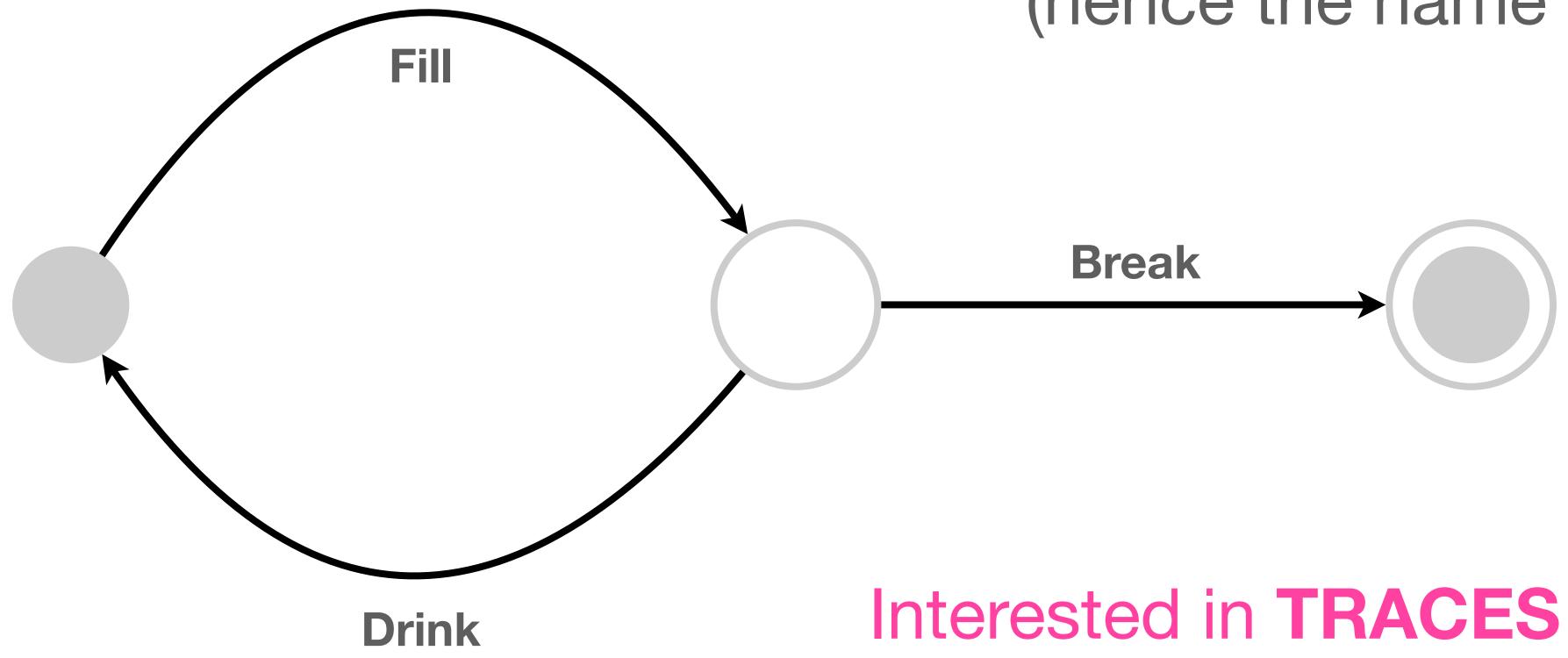
Labeled Transition System (Refresher/Example:)



Labeled Transition System (Refresher/Example: 2) 1st ingredient: set of states



Labeled Transition System (Refresher/Example:

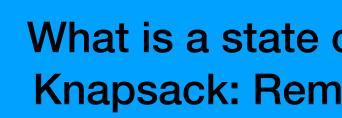


2nd ingredient: Labeled Transitions (hence the name !)

Interested in **TRACES** of the automaton

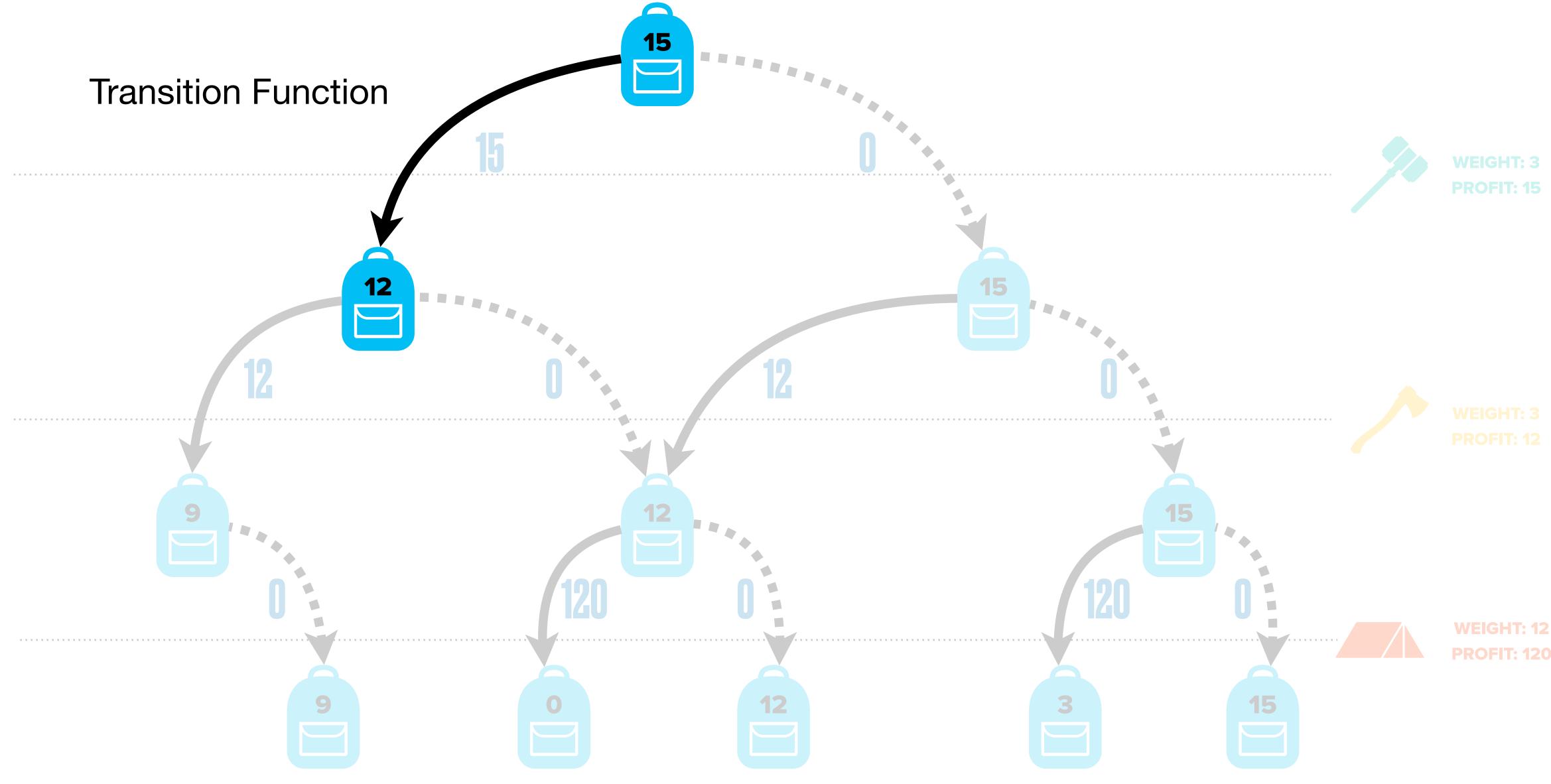
Observation **Dynamic Program can be Seen as a Labeled Transition System (LTS)**

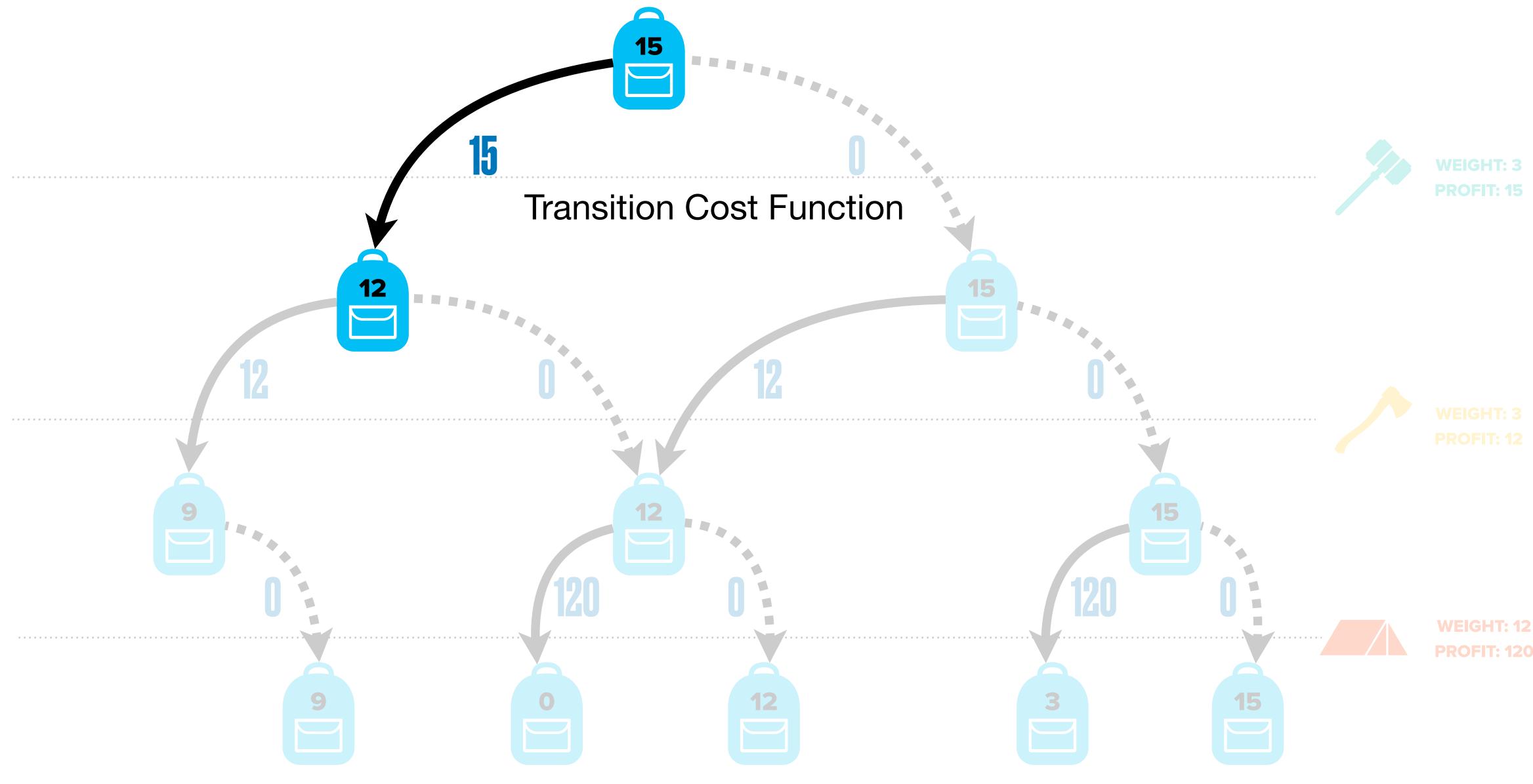
- State Spaces
- Initial State
- Initial Value
- Transition Function
- Transition Cost Function



What is a state of the problem ? **Knapsack: Remaining Capacity**







DP seen as a LTS – Formally

Objective

Gharacterization

maximize f(x)

- $x = \{x_0, x_1, \dots, x_{n-1}\}$ **Decision Variables:** $D = \{D_0, D_1, \dots, D_{n-1}\}$ **Domains:** $S = \{S_0, S_1, \dots, S_n\}$ $r \in S_0$ and $S_0 = \{r\}$ **Initial State:** $t \in S_n$ **Terminal State:** ⊥ (irrecoverable !) **Infeasible State:** $\tau_i: S_i \times D_i \to S_{i+1}$ **Transition Functions:** $h_i: S_i \times D_i \to \mathbb{R}$

- State Spaces : Transition Cost Function:

- **Initial Value:**

$$v_{r} = v_{r} + \sum_{i=0}^{n-1} h_{i}(s^{i}, x_{i})$$

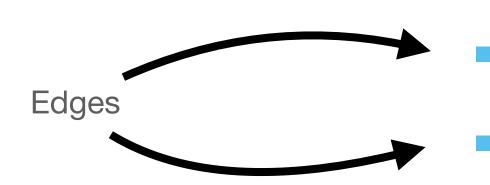
 \mathcal{V}_r

NP SEEN AS A LABELED TRANSITION SYSTEM --> DD Objective maximize $f(x) = v_r + \sum_{i=1}^{n-1} h_i(s^i, x_i)$

- **Decision Variables:**
- **Domains:**
- State Spaces :
- **Initial State:**

- **Terminal State:**
- **Infeasible State:**
- **Transition Functions:**
- **Transition Cost Function:**
- **Initial Value:**

Characterization



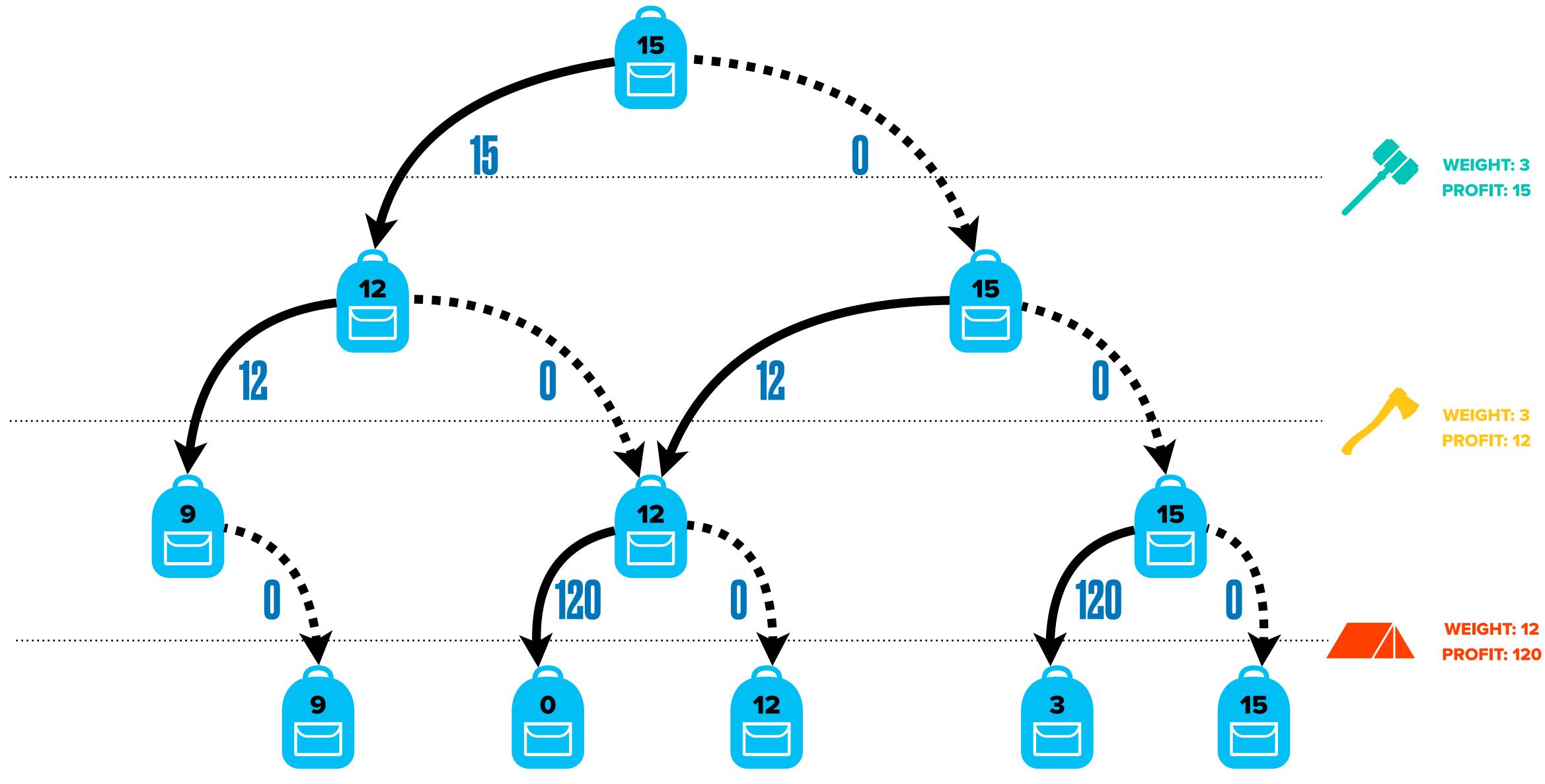
i=0

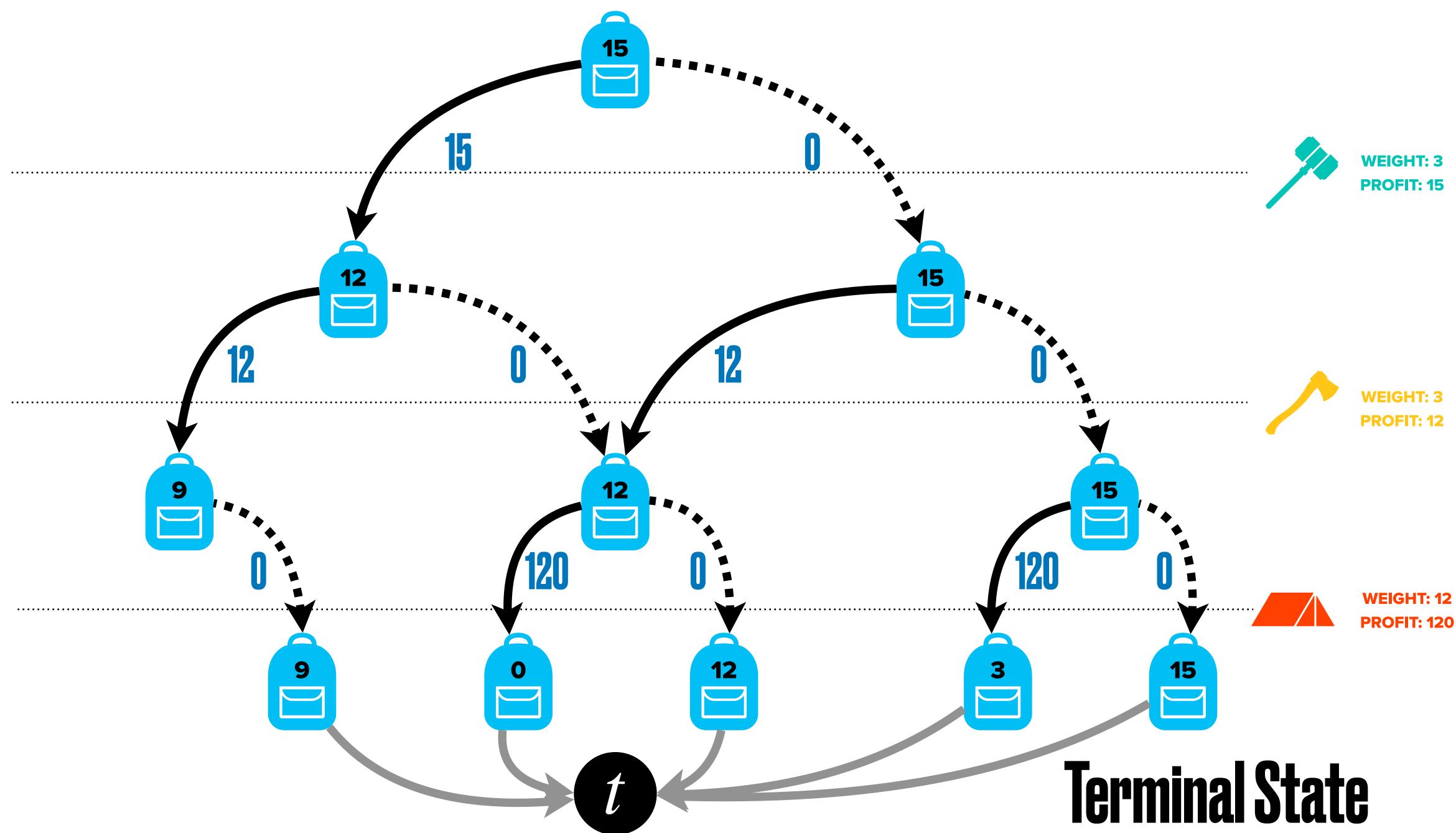
 $x = \{x_0, x_1, \dots, x_{n-1}\}$ $D = \{D_0, D_1, \dots, D_{n-1}\}$ $S = \{S_0, S_1, \dots, S_n\}$ $r \in S_0$ and $S_0 = \{r\}$ $t \in S_n$ ⊥ (irrecoverable !) $\tau_i: S_i \times D_i \to S_{i+1}$ $h_i: S_i \times D_i \to \mathbb{R}$ \mathcal{V}_r

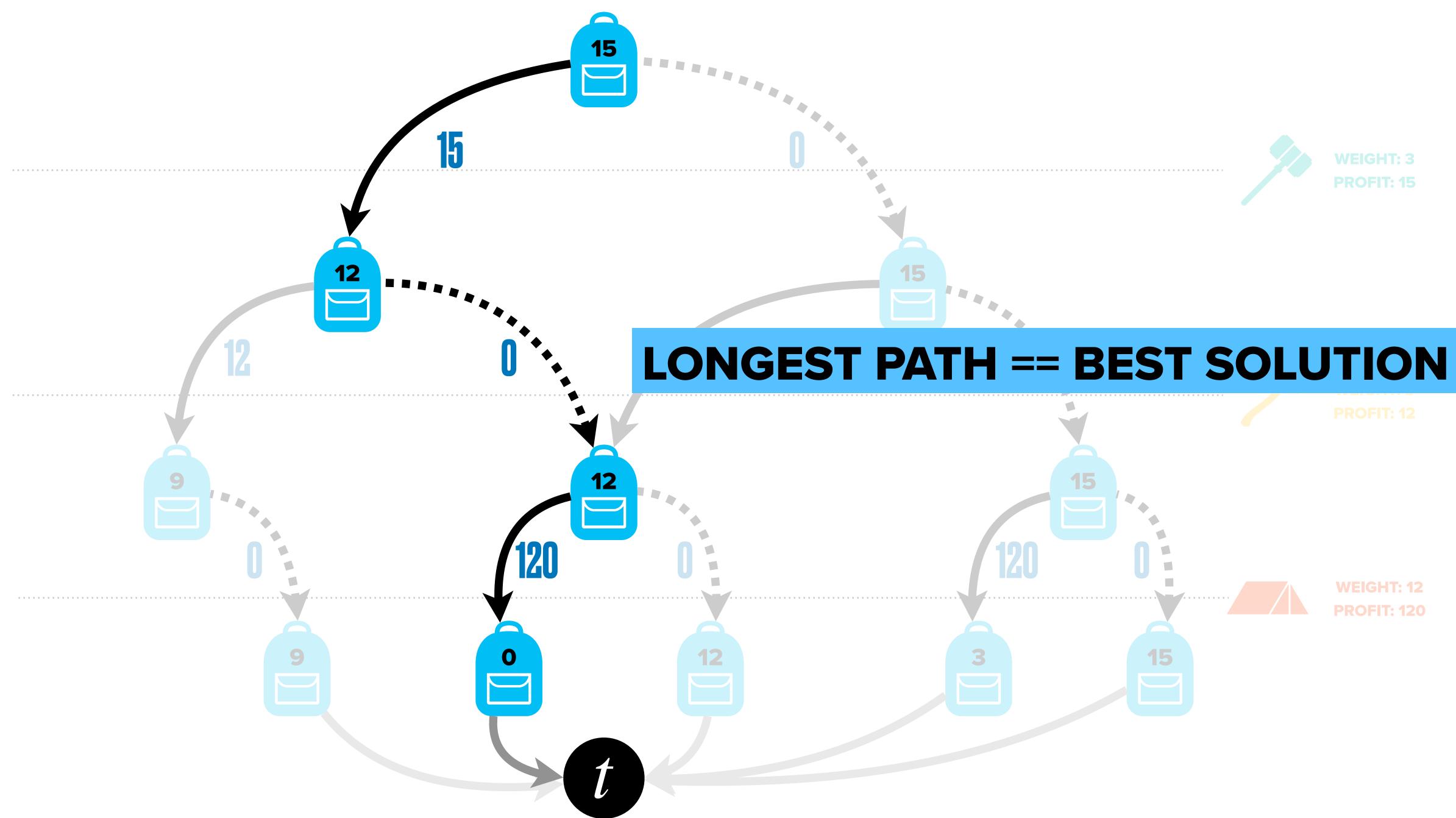
Part 2: Decision Diagrams

Decision Diagram Formal Definition

Layered automaton encoding **sets of decision sequences**. In that graph, a path between the source and a terminal node traverses one node from each layer of the graph. In this structure, the **labels on the arcs** connecting two nodes are interpreted as the **assignment of a given value to a variable**: the value being the label of the arc and the variable, the one associated to the layer crossed by the arc.







Problem Some problems are just too hard to solve

- DD is compact but it will not fit in a
 - computer memory*
- ==> Solution: Control the size of the compiled DD

* Remember the TSP from the first lab on dynamic programming?

Controlling the Size of the Compiled DD

Impose a maximum width W on the DD

- No layer can hold more than W nodes
- Prevents the exponential growth of the DD

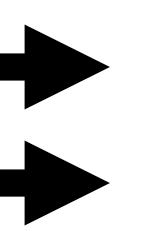
Two approaches

- **Delete** the less promising nodes when there are too many
- Merge the less promising nodes when there are too many

We will use both approaches ... and use them in the context of a Branch-and-Bound

Purpose of each method

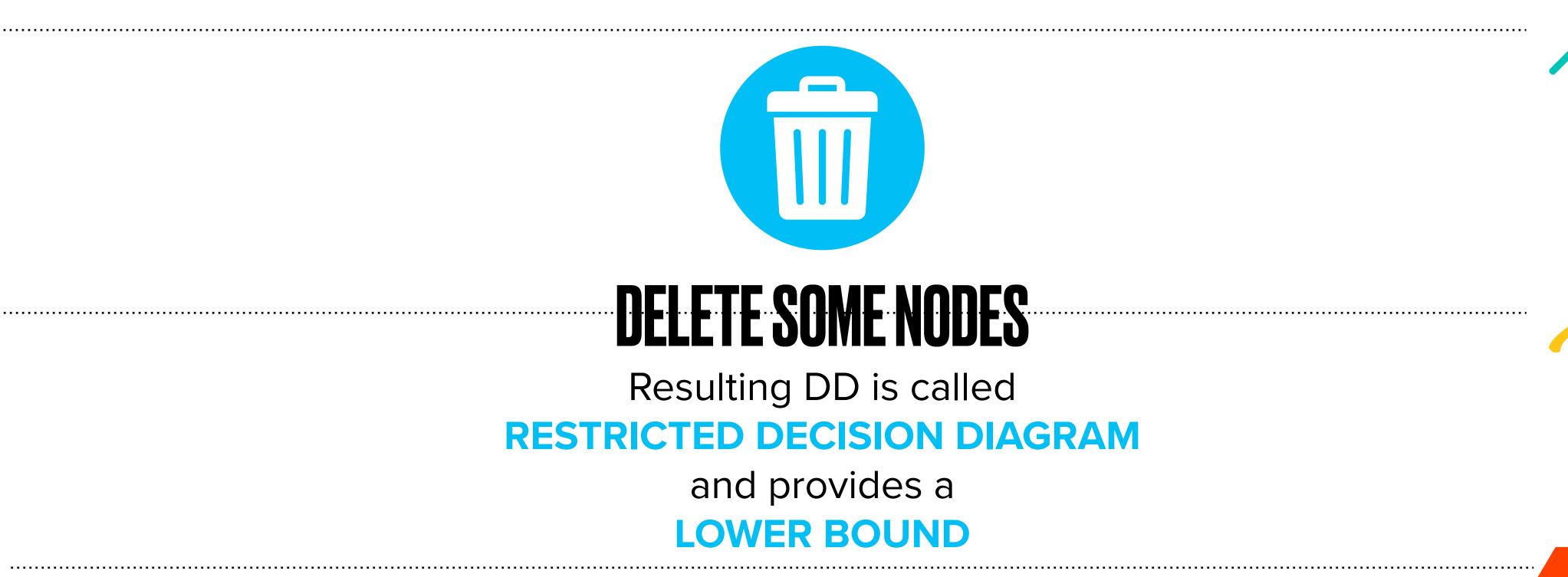
- **Delete** the less promising nodes
- Merge the less promising nodes



Derive lower bound

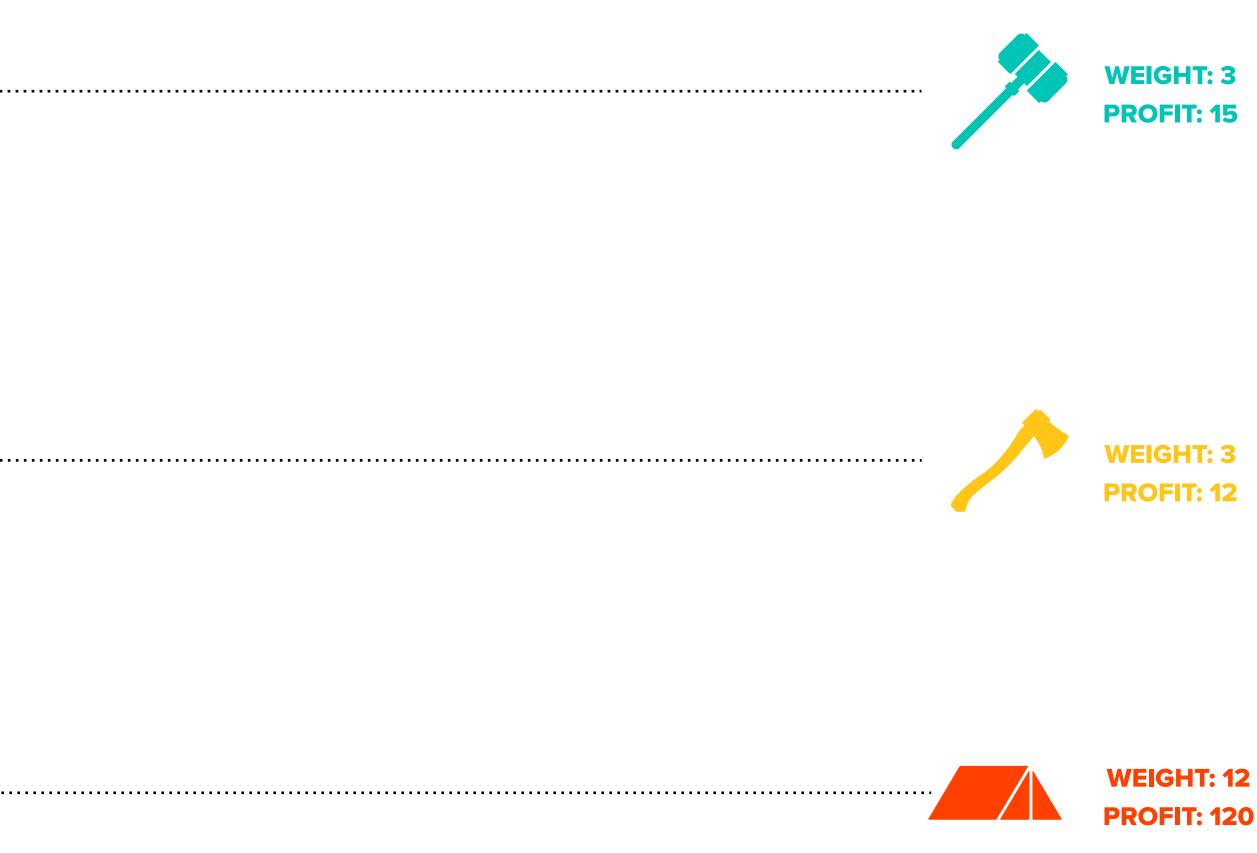
Derive upper bound

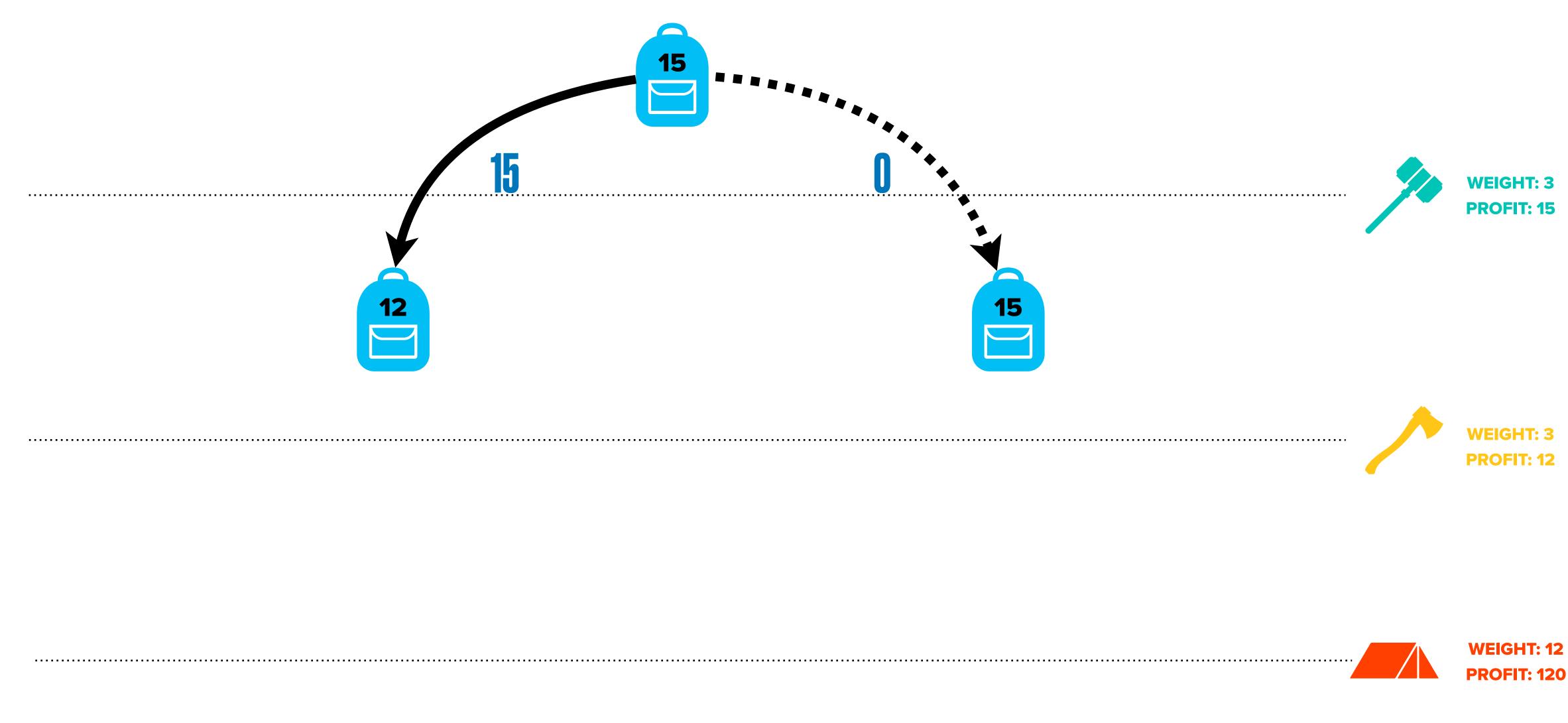
First method

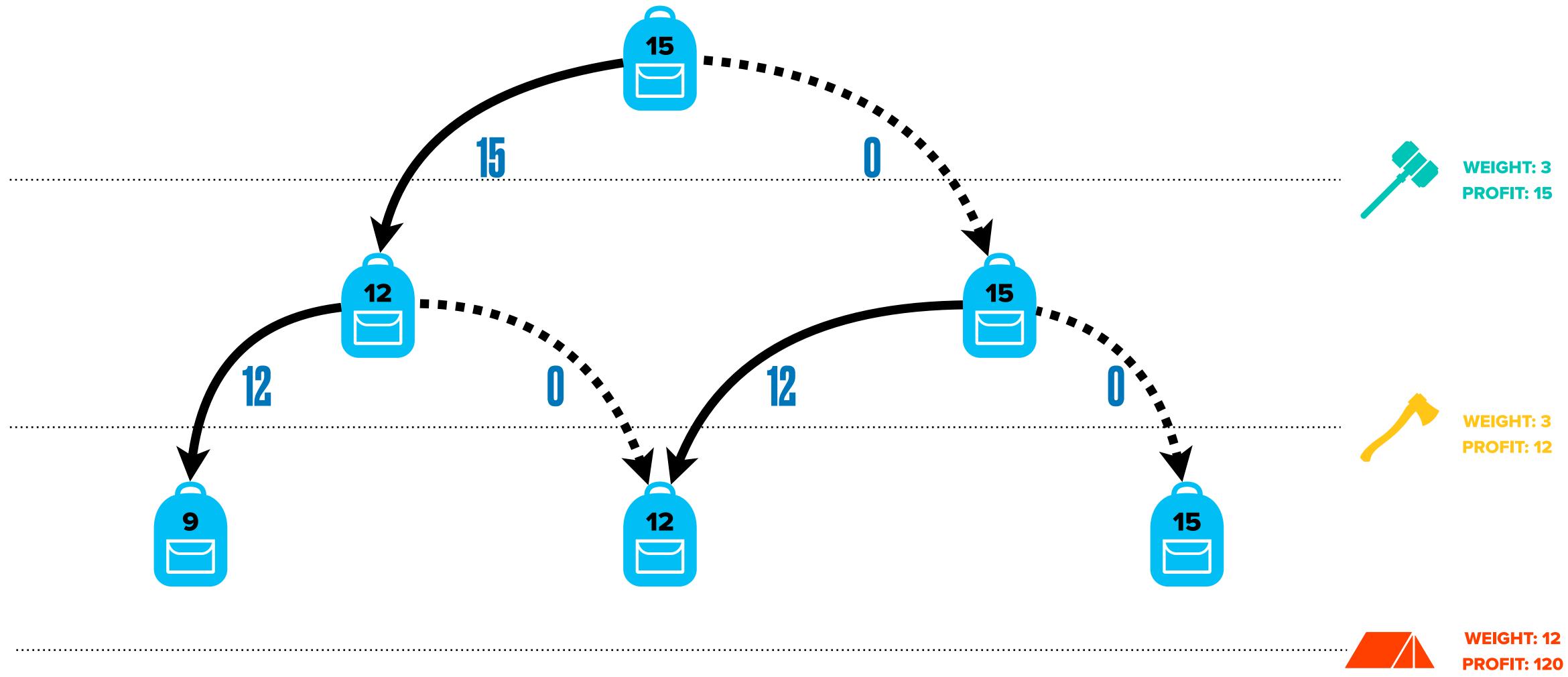


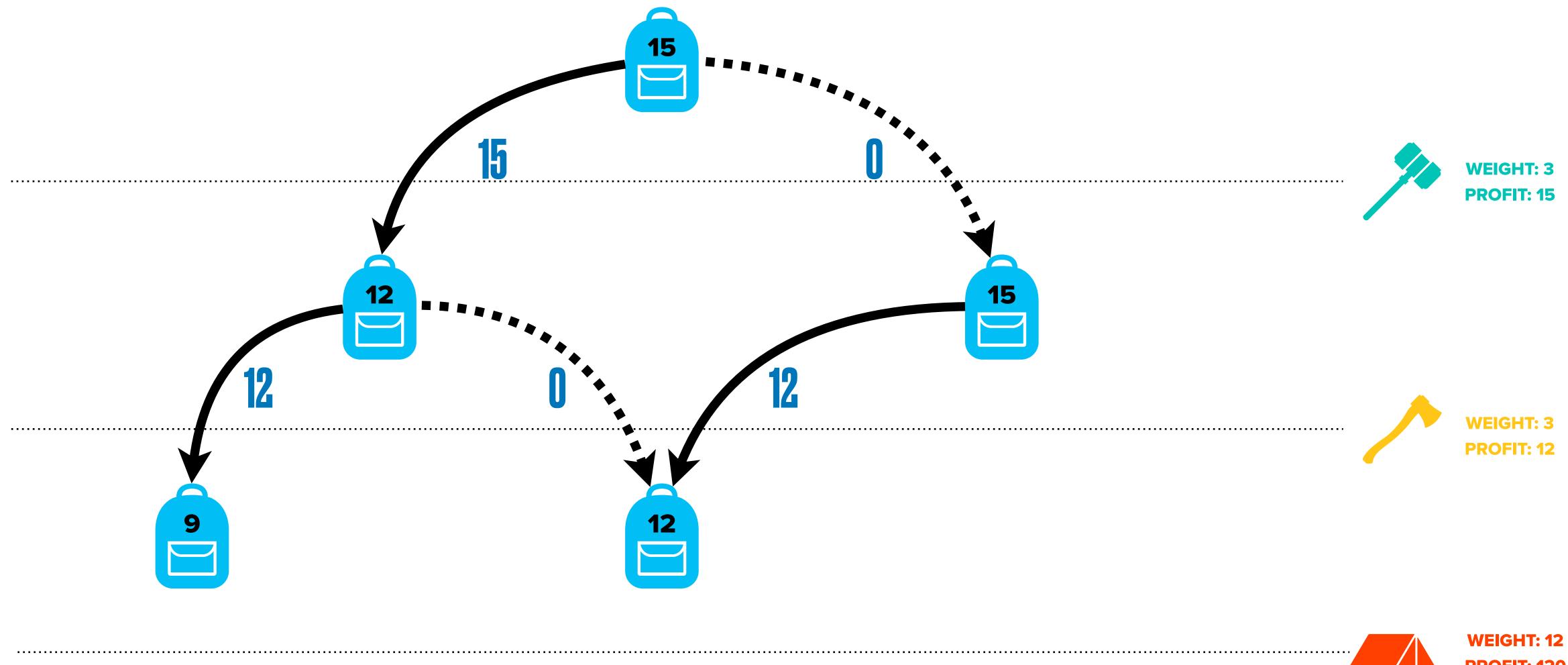
WEIGHT: 12

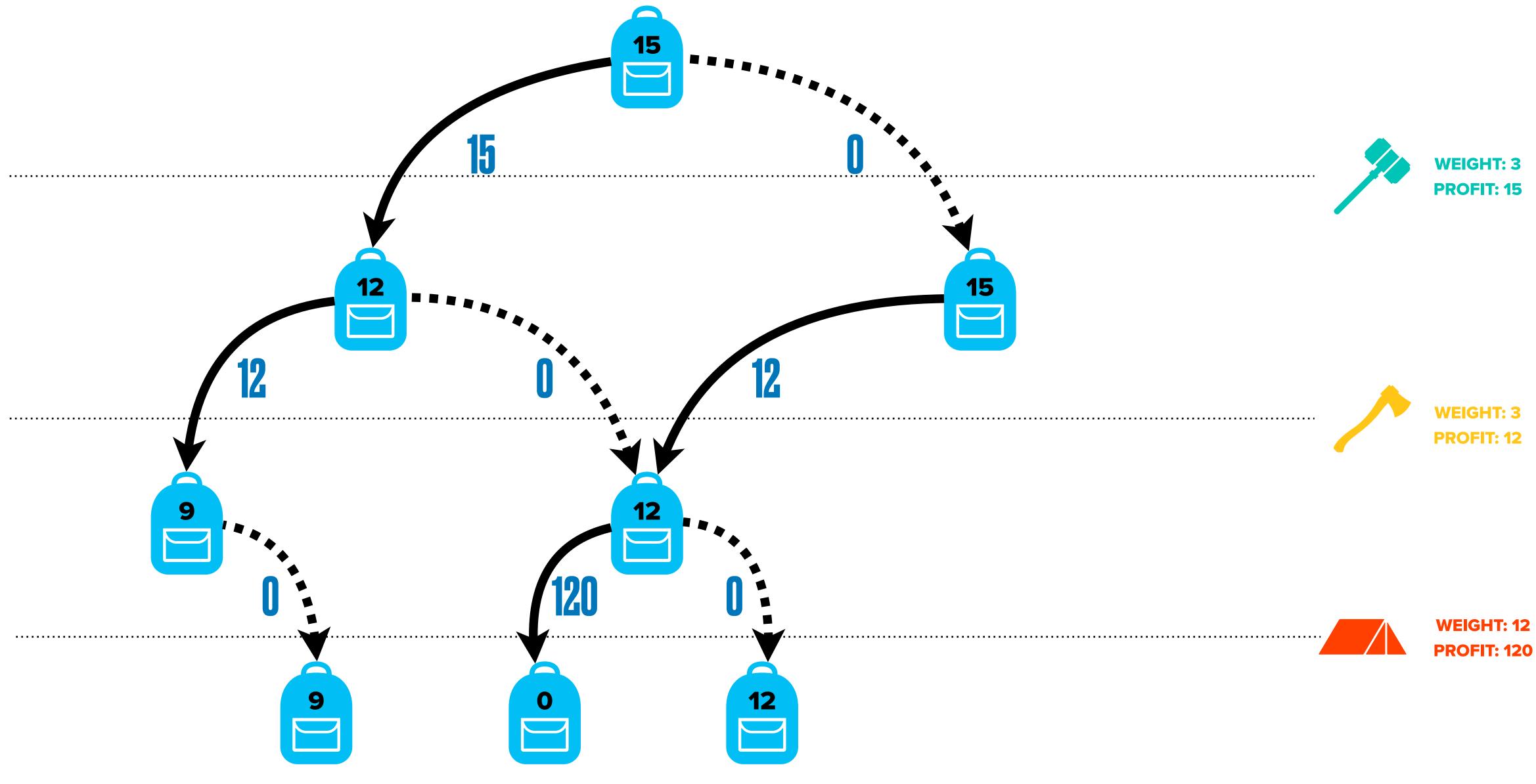
WEIGHT:

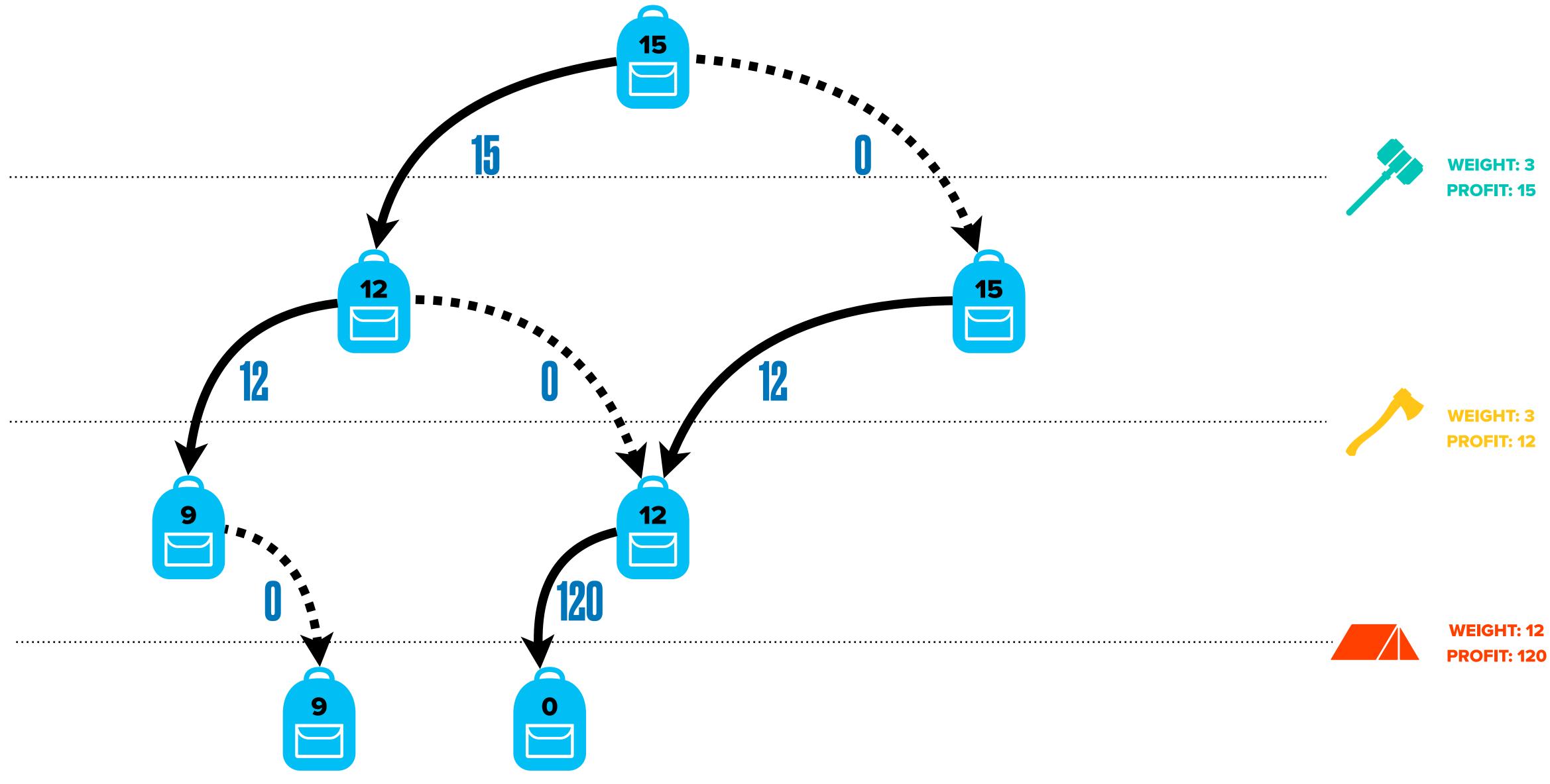


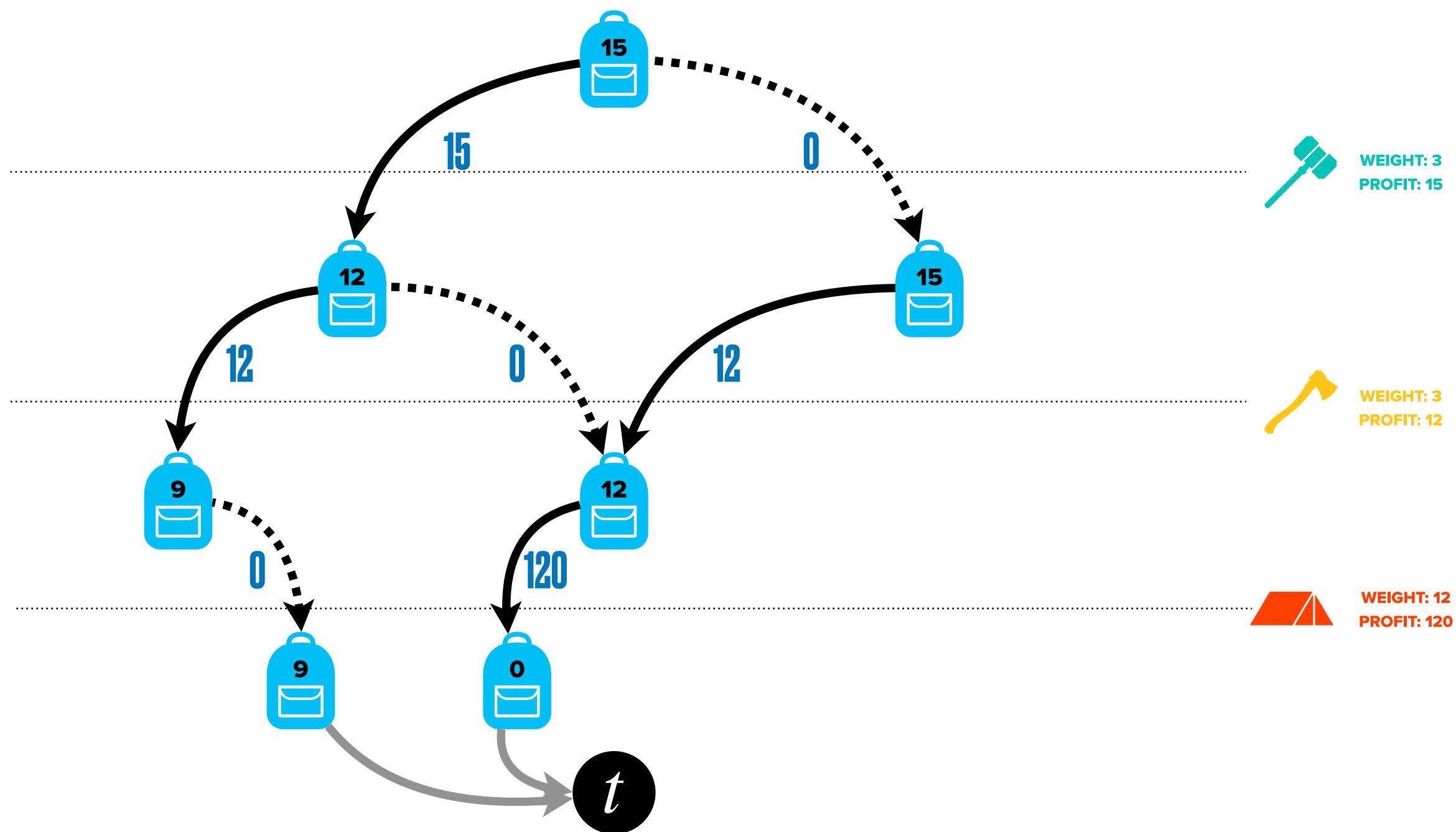


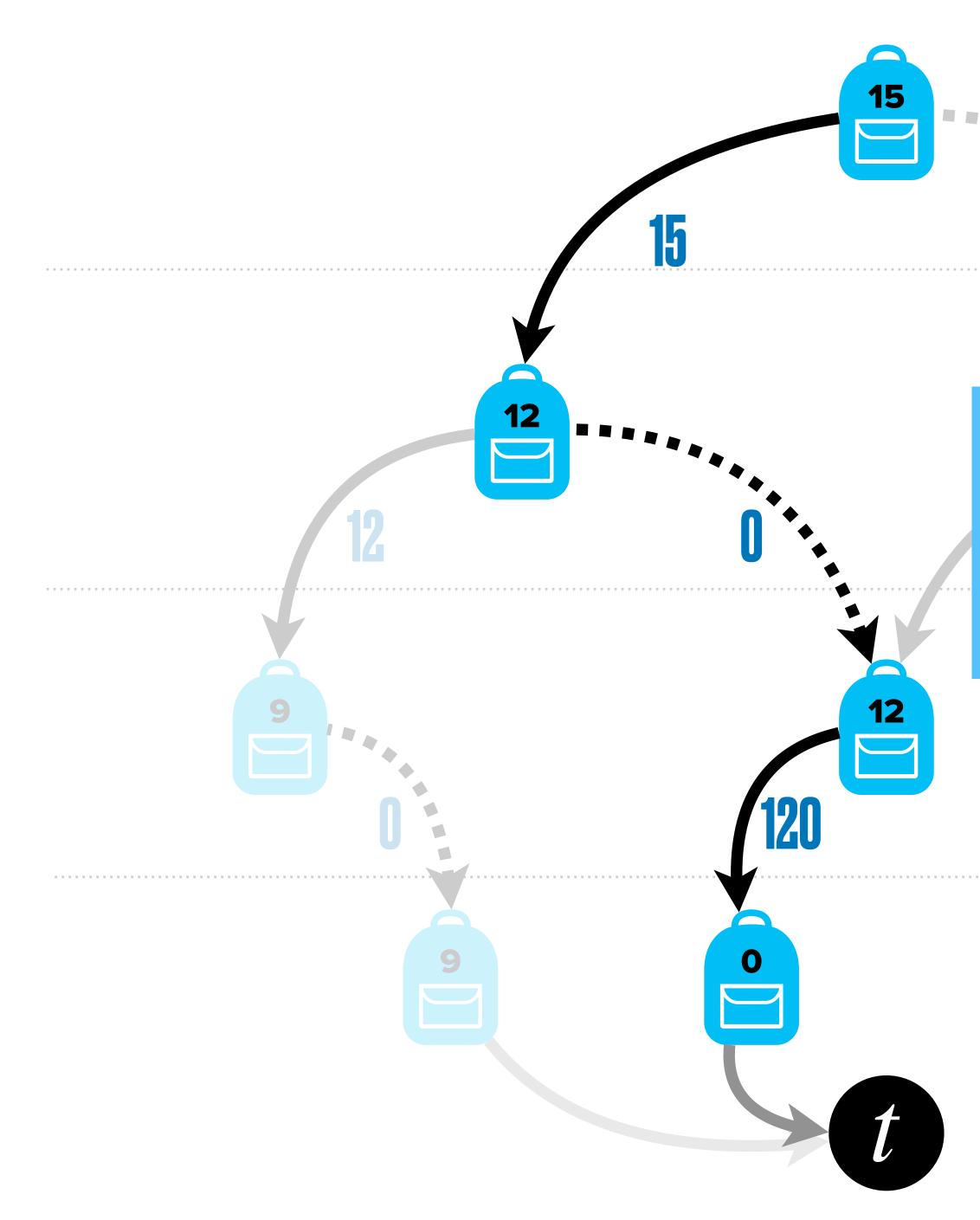












LUCKILY THE LONGEST PATH IS STILL OPTIMAL, BUT IT IS NOT GUARANTEED (LOWER BOUND)

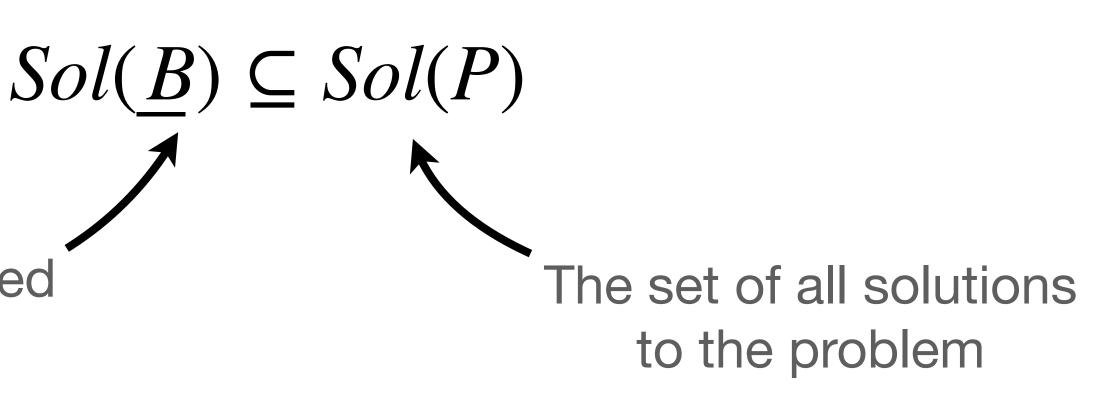
WEIGHT: 1 **PROFIT: 120**

First Method Restricted Decision Diagrams

- Some paths are missing from the DD
- Longest path is guaranteed to be a valid solution
- Longest path is not guaranteed to be the optimal solution (LOWER BOUND)

Formally

The set of all solutions encoded in the restricted DD B



Second method

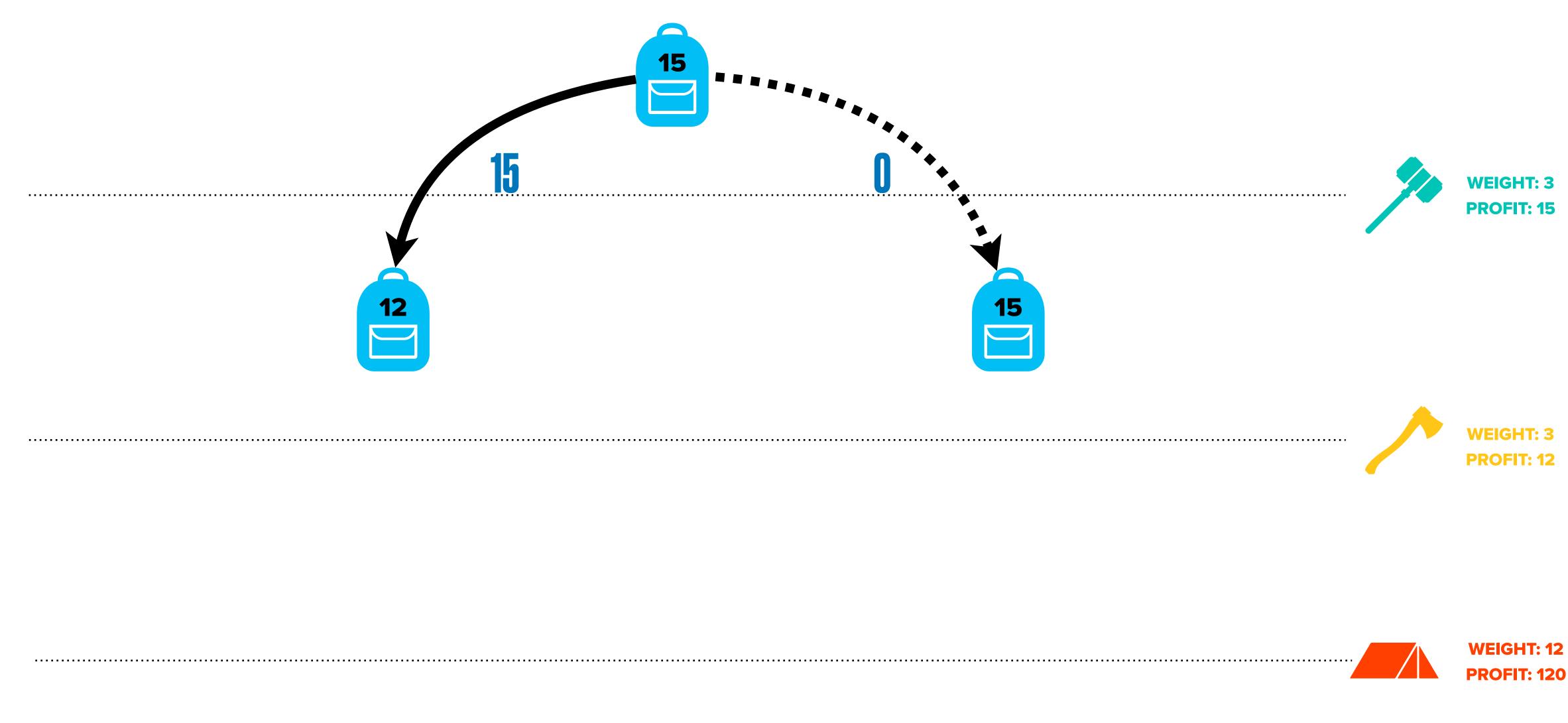
Resulting DD is called

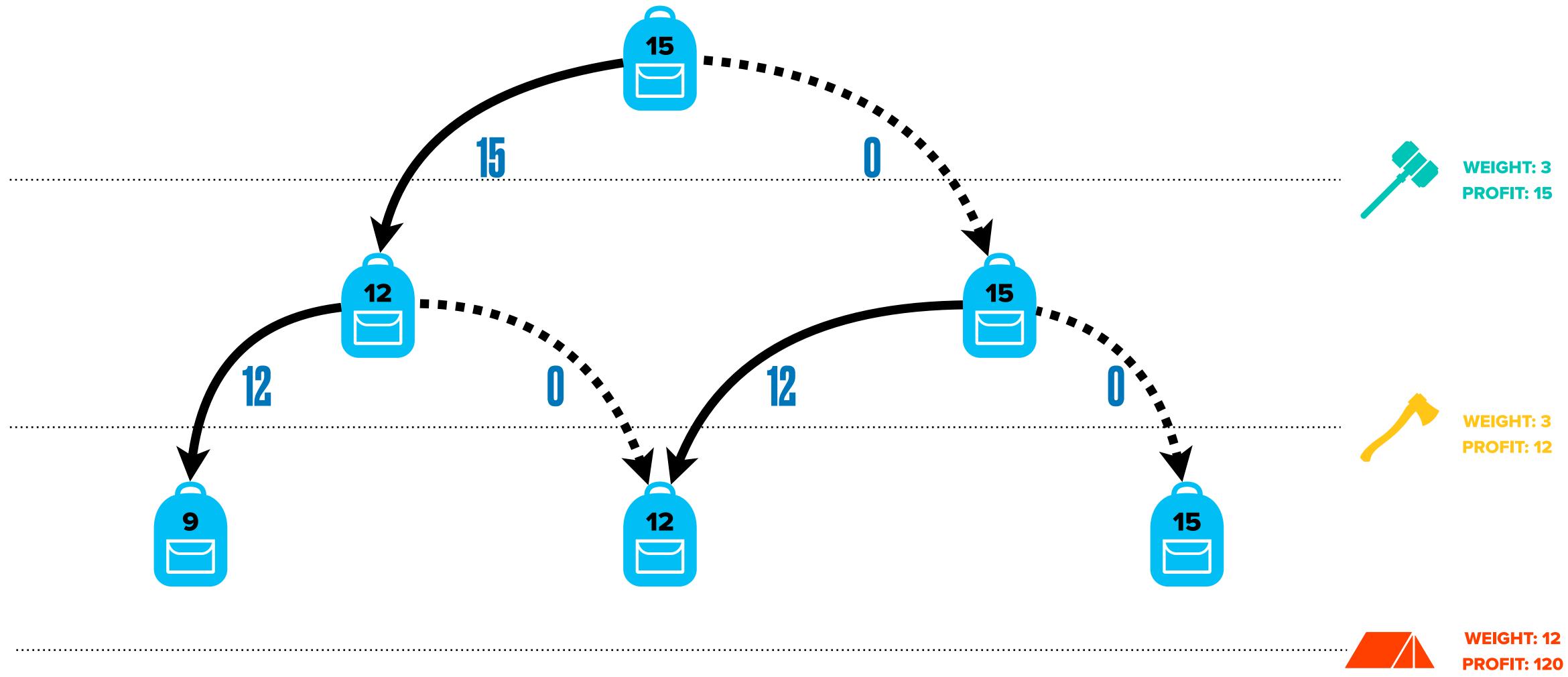
MERGE SOME NODES RELAXED DECISION DIAGRAM

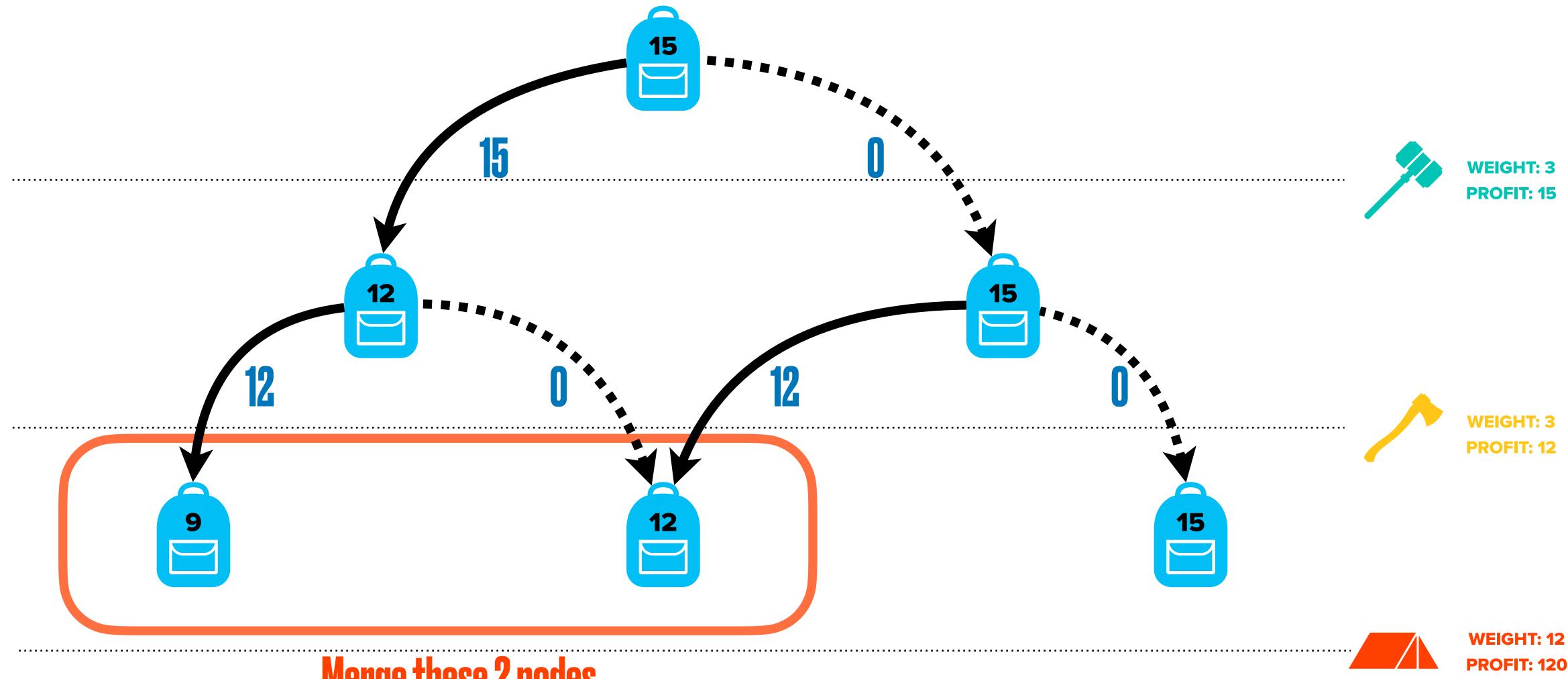
and provides a **UPPER BOUND**

WEIGH1

WEIGHT: 12 **PROFIT: 120**

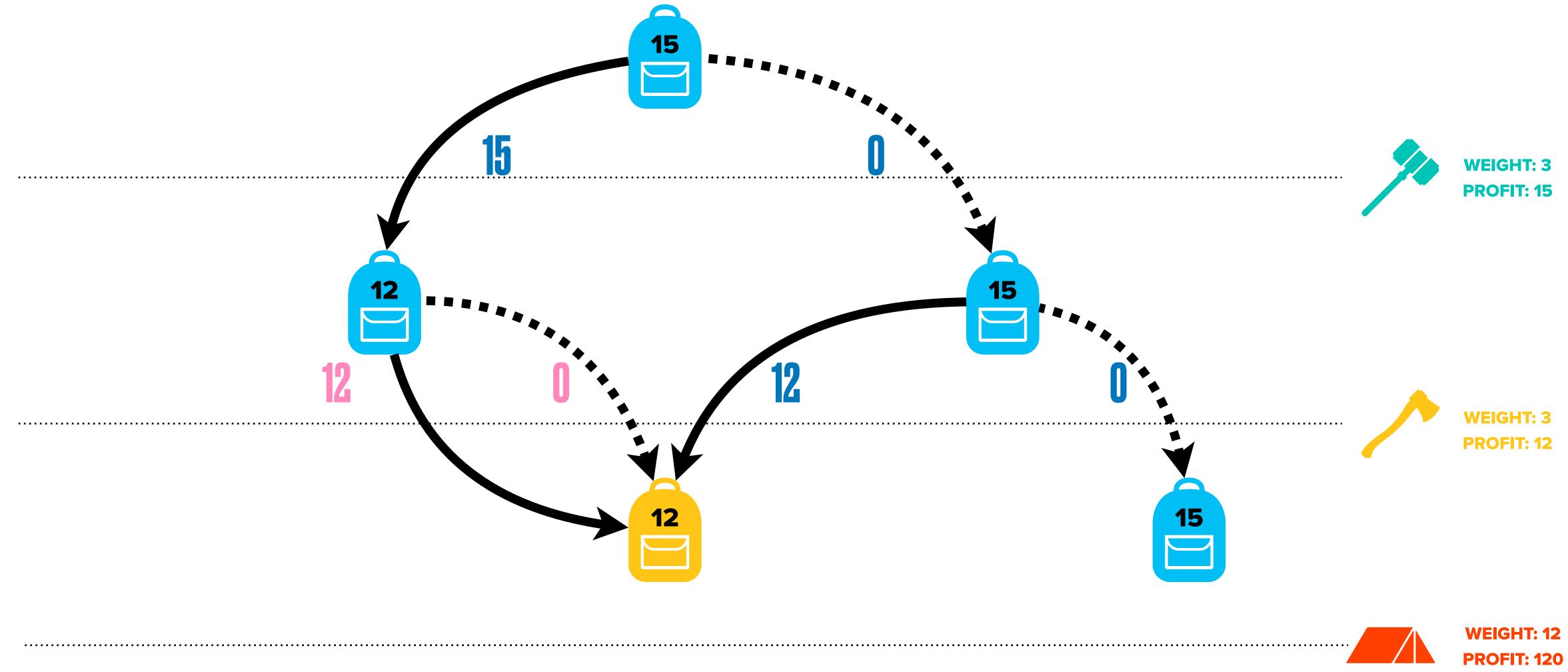


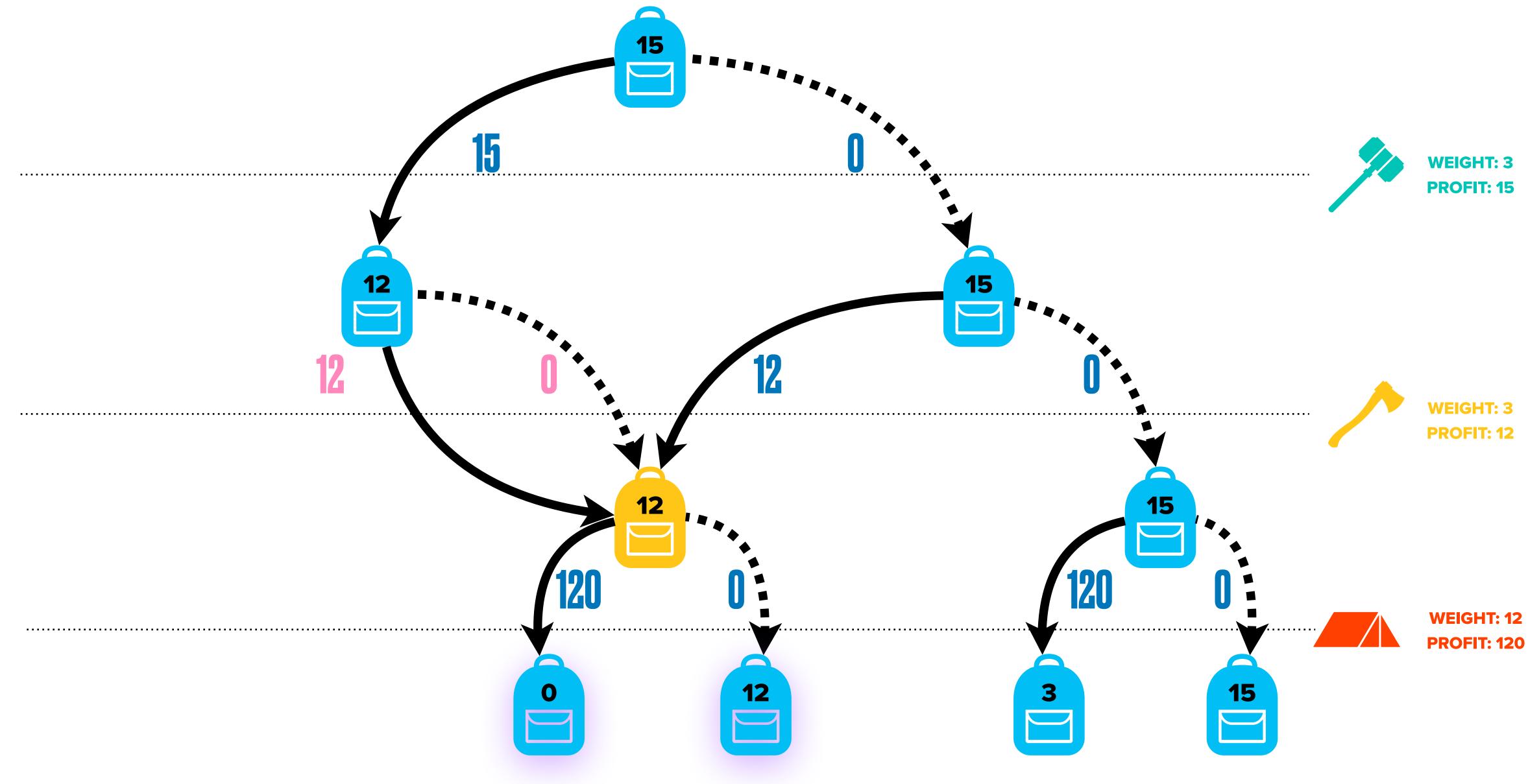


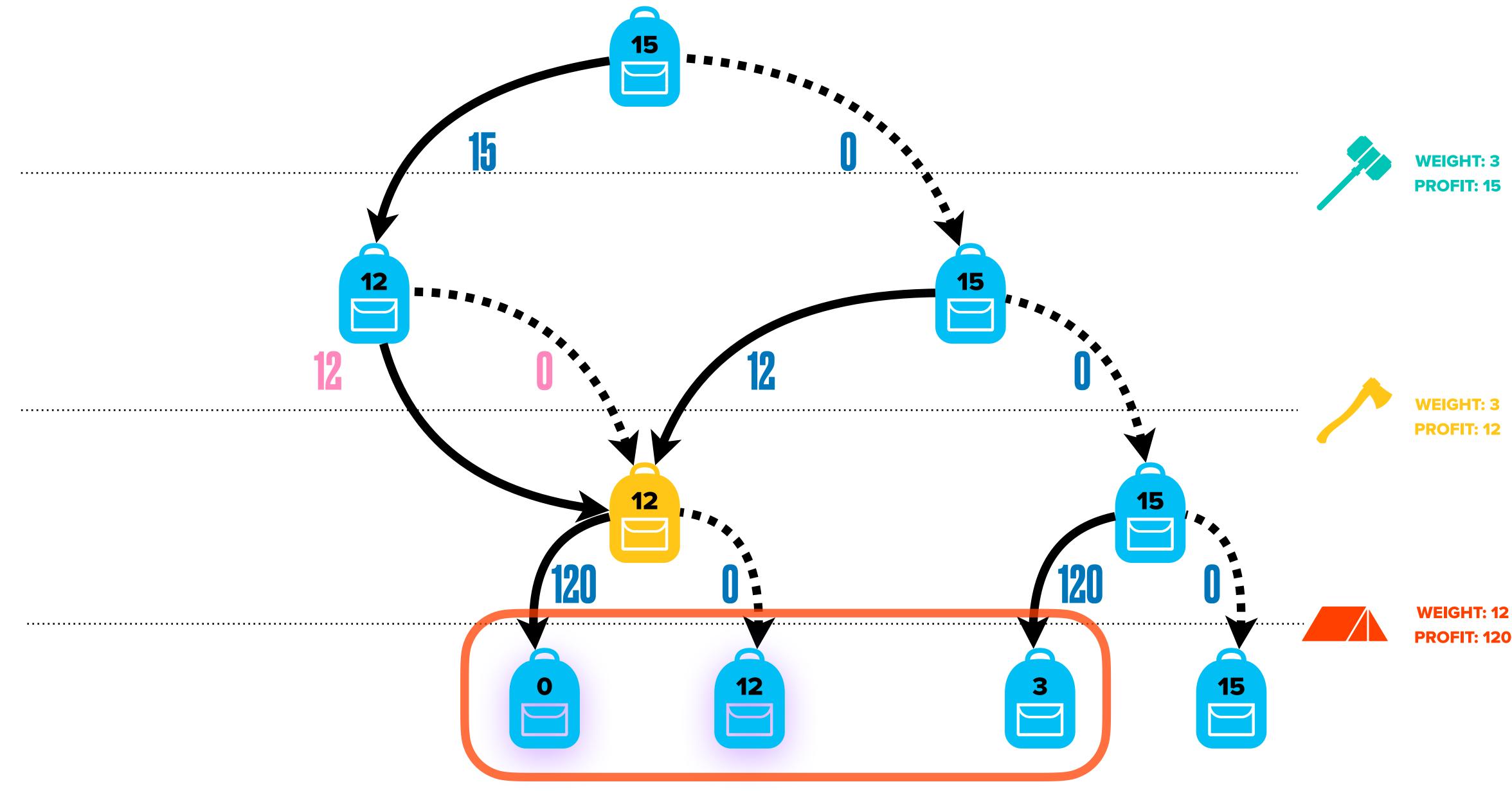


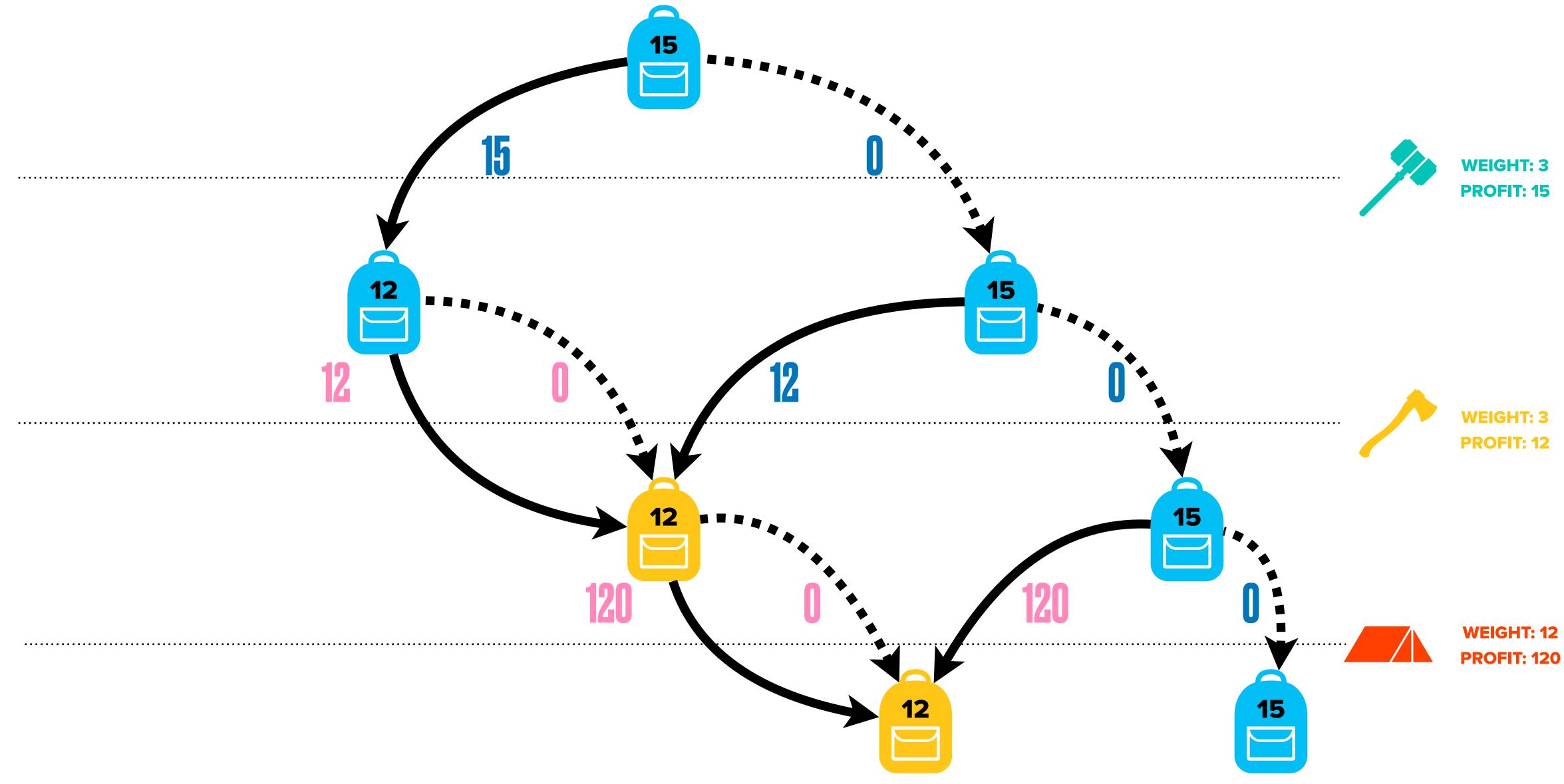
Merge these 2 nodes **Requires 2 operators**

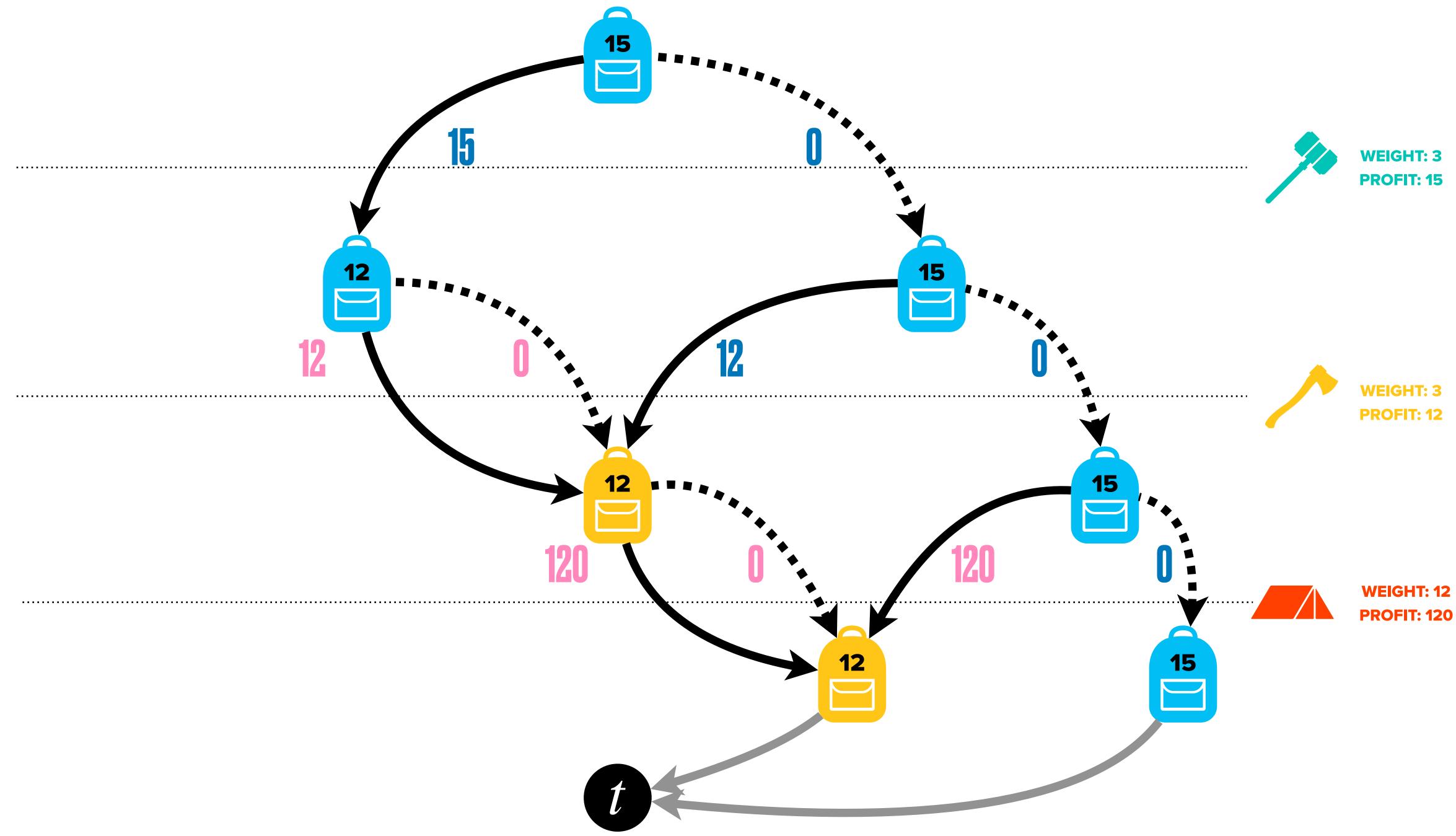
 \bigoplus (states) and $\Gamma(arc)$

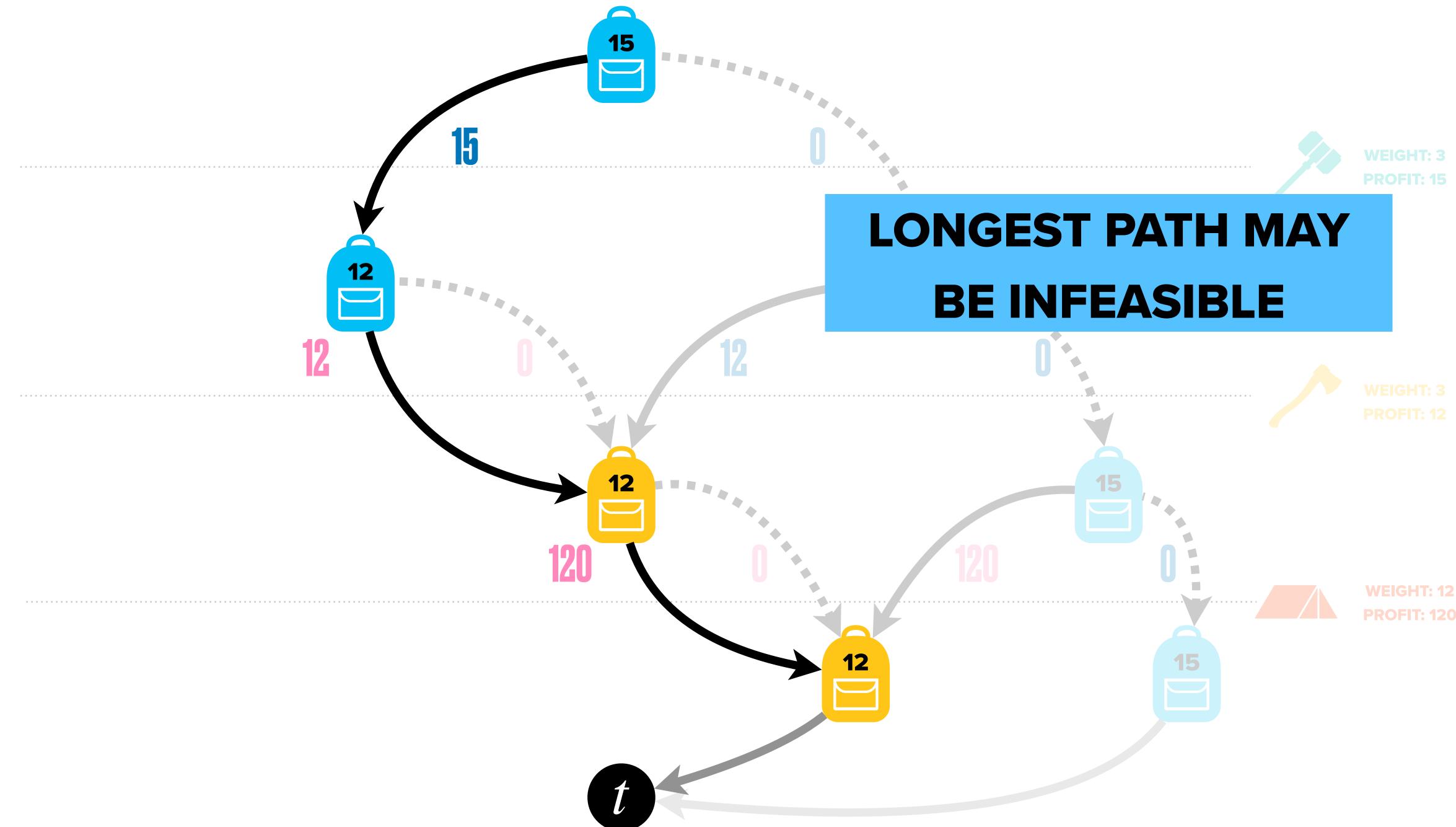










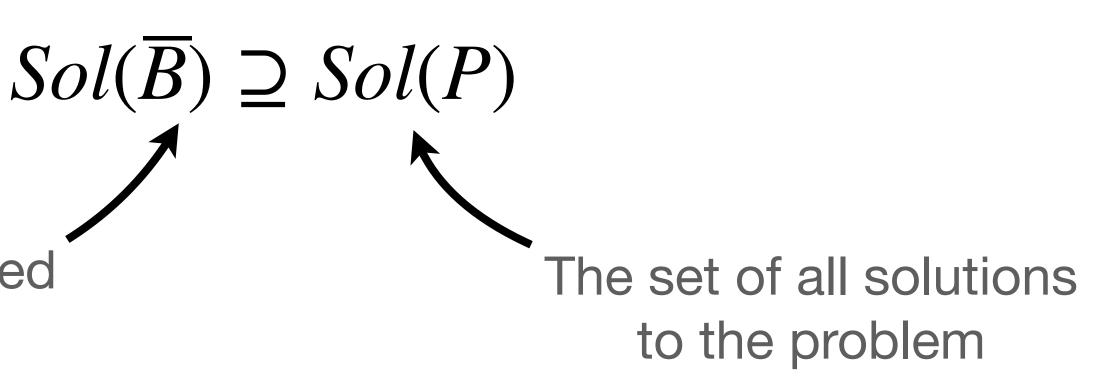


Second Method Relaxed Decision Diagrams

- Requires two additional operators to merge nodes \oplus and relax arcs Γ
- Longest path is *not* guaranteed to be a valid solution
- Longest path is guaranteed to be at least as long as the optimal solution **(UPPER BOUND)**

Formally

The set of all solutions encoded in the restricted DD \overline{B}



There may be more paths in the DD than exists actual solutions

Recap' So far we have

- Restricted DD yield feasible solution (lower bound) $Sol(\mathscr{B}) \subseteq Sol(\mathscr{P})$
- Relaxed DD yield (possibly) non-feasible solution (upper bound) $Sol(\mathscr{B}) \supseteq Sol(\mathscr{P})$

Where do we go from there ?

where $Sol(\cdot)$ denotes the set of solutions, \mathscr{B} is a restricted DD, $\overline{\mathscr{B}}$ is a relaxed DD, and \mathscr{P} is the original problem

Use these two ideas to derive a B-a-B framework that is able to find the longest path in the original MDD (that was to large to be build initially)

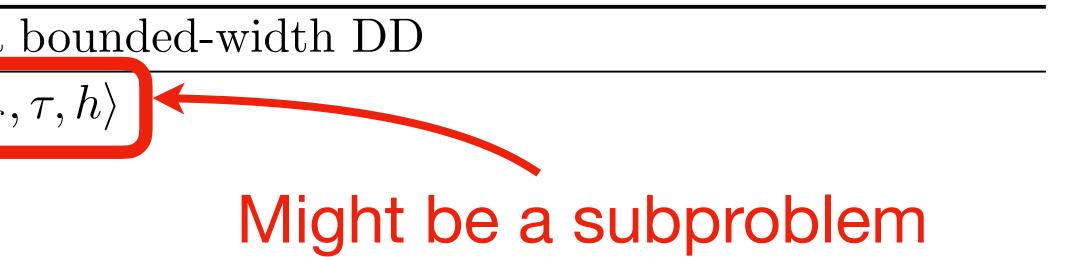
Algorithm Top Down Compilation of a b
1: Input: a DP-model $\mathcal{P} = \langle S, r, t, \bot, v_r, \rangle$
2: Input: a maximum layer width W
3: $L_0 \leftarrow \{r\}$
4: for $i \in \{0 n - 1\}$ do
5: for $u \in L_i, d \in D_i$ do
6: $u' \leftarrow$ a node associated with state
7: if $\sigma(u') \neq \bot$ then
8: $U \leftarrow U \cup \{u'\}$
9: $L_{i+1} \leftarrow L_{i+1} \cup \{u'\}$
10: $a \leftarrow u \xrightarrow{d} u'$
11: $v(a) \leftarrow h_i(\sigma(u), d)$
12: $A \leftarrow A \cup \{a\}$
13: end if
14: end for
15: if $ L_{i+1} > W$ then
16: Restrict or Relax the layer to get
17: end if
18: end for

bounded-width DD

, au,h
angle

te $au_i(\sigma(u), d)$

t at most W nodes

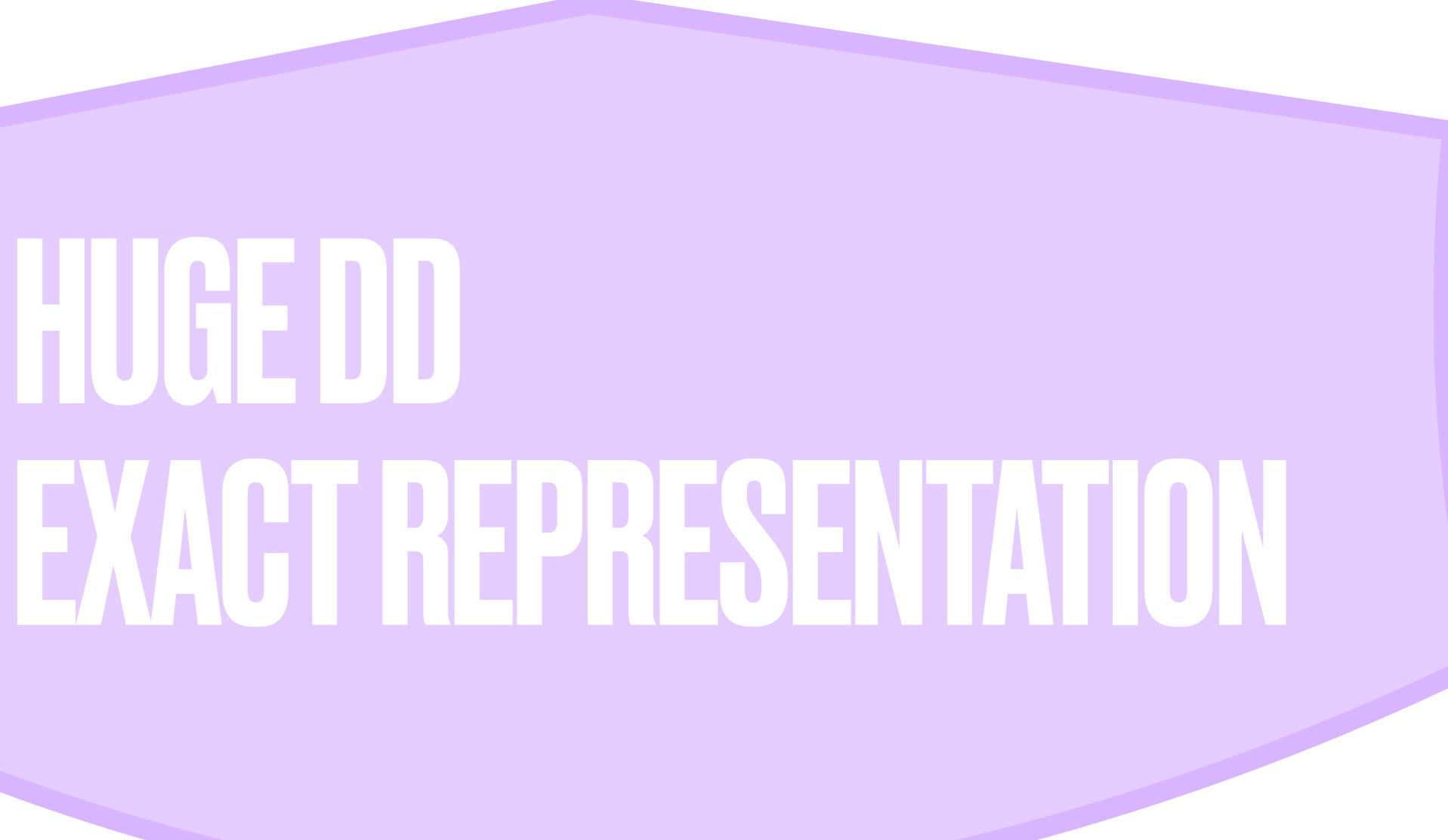


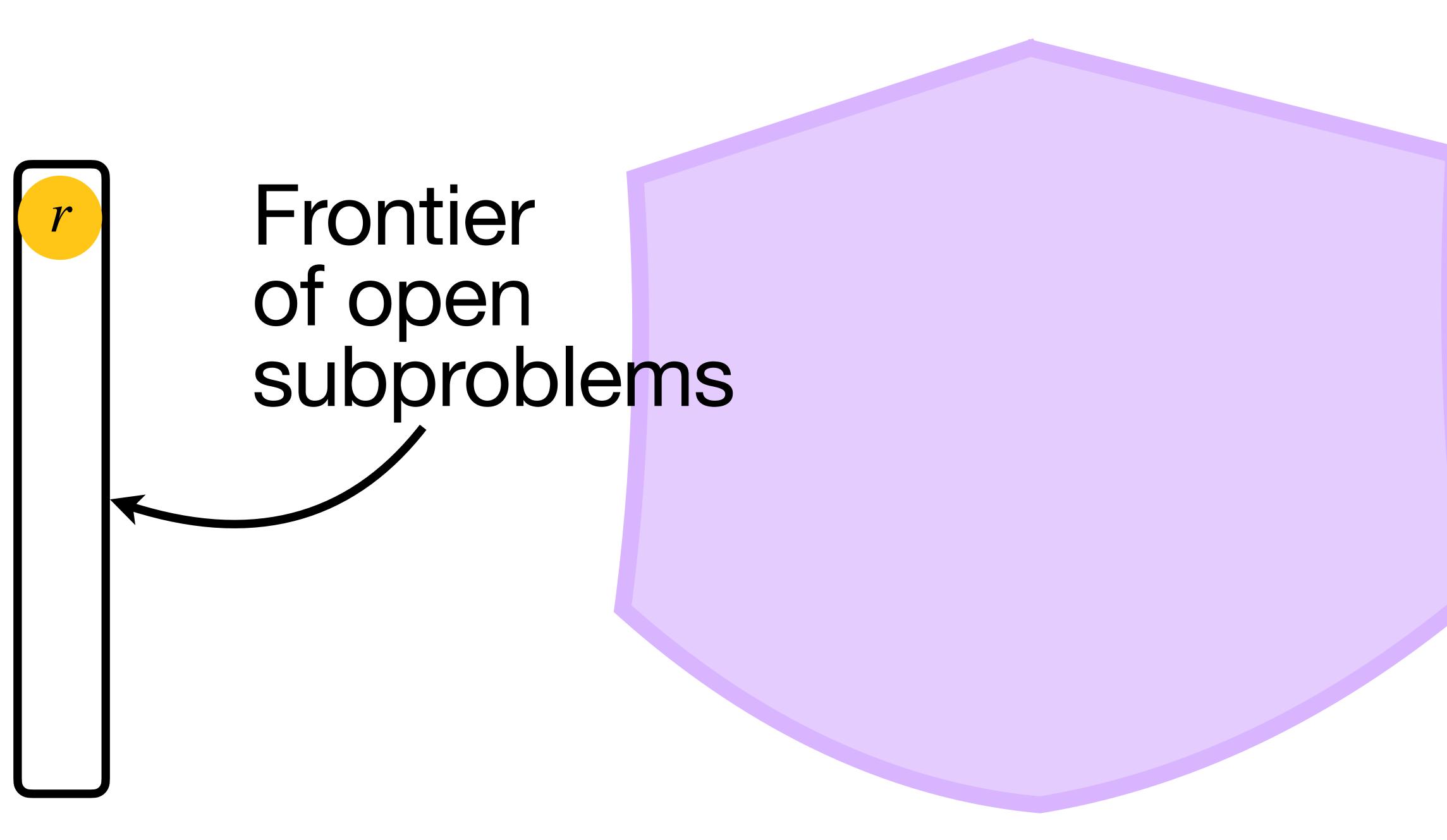
te $\tau_i(\sigma(u), d)$

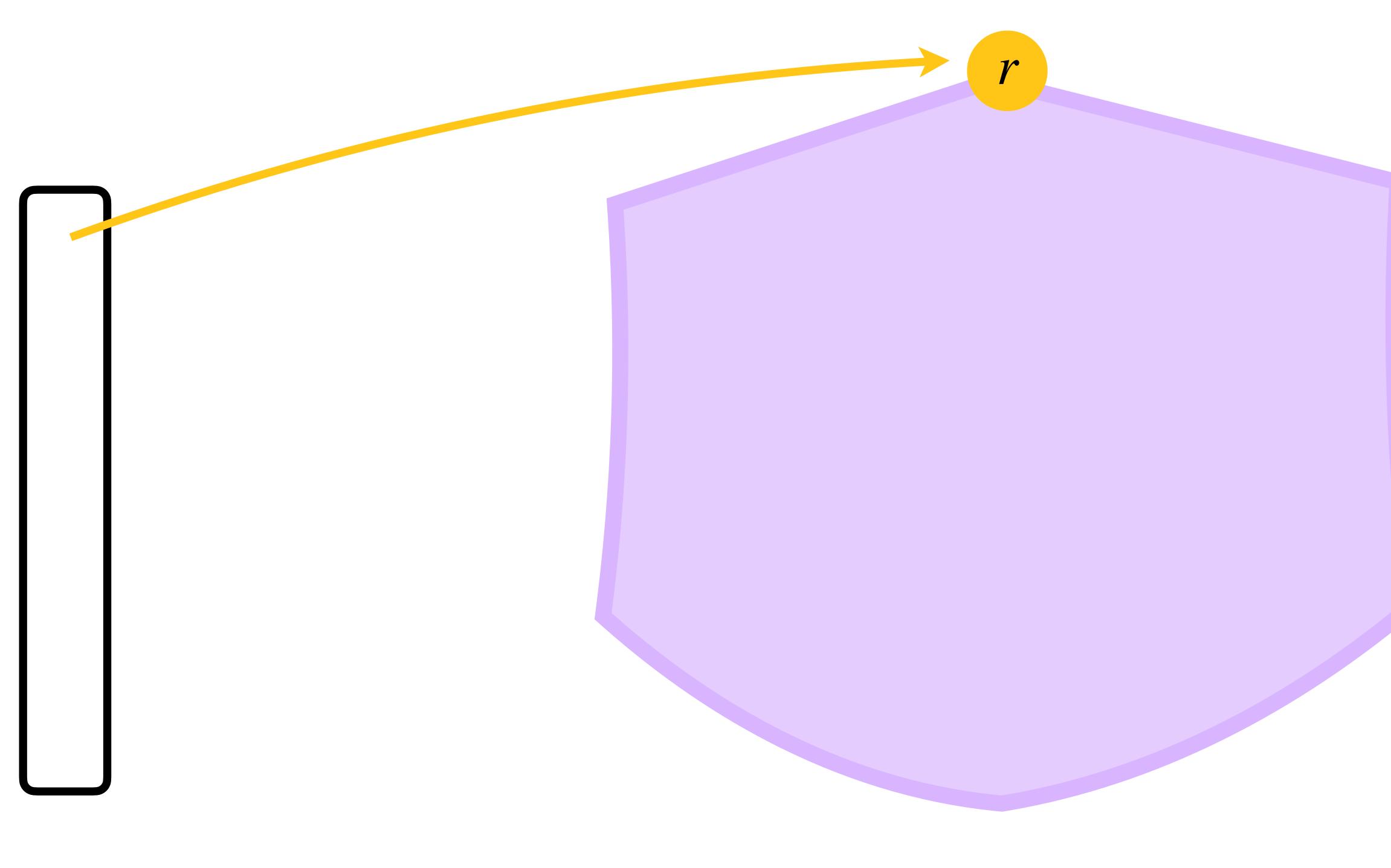
t at most W nodes

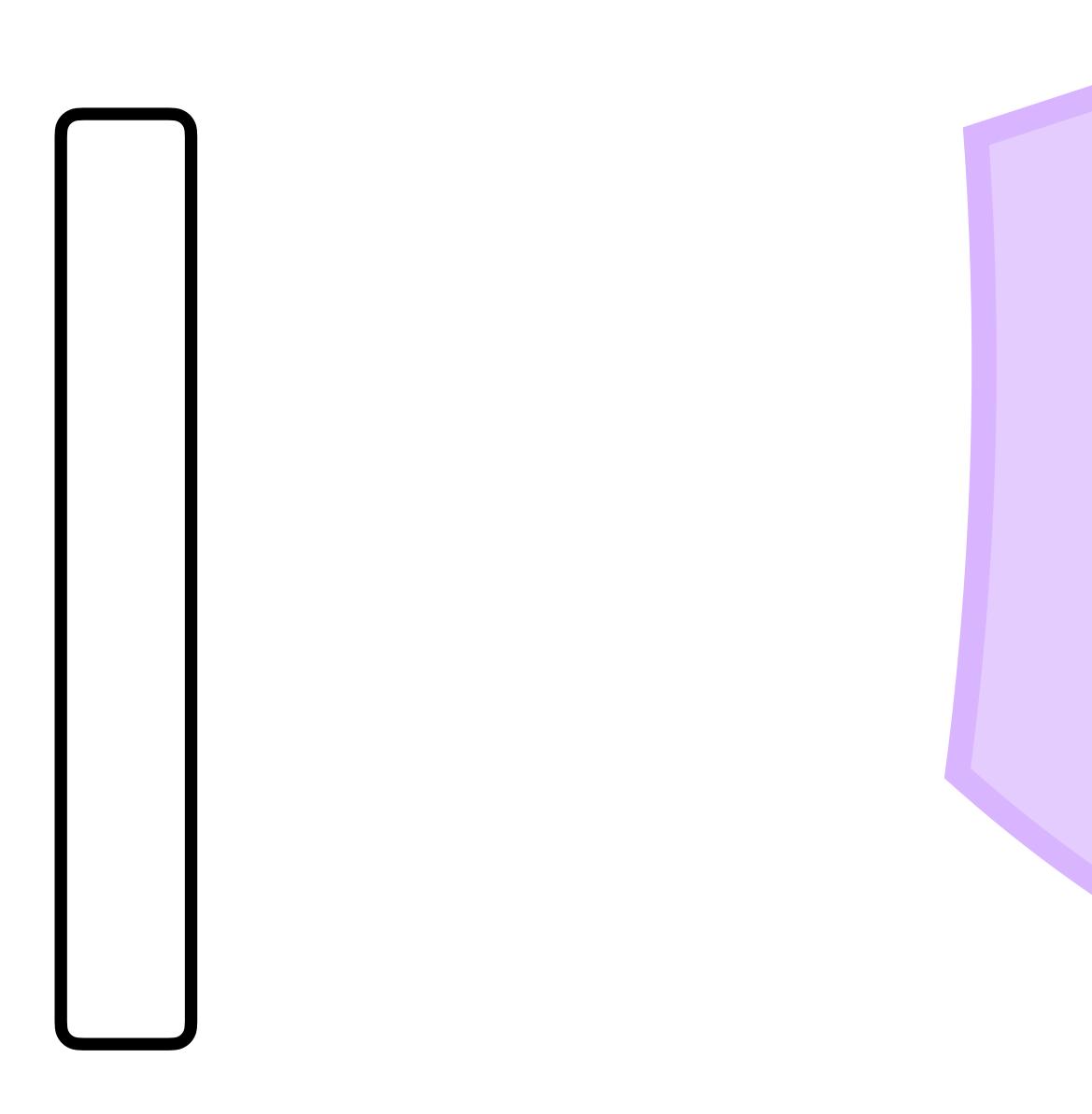
6 5

Algorithm Branch-And-Bound with DD 1: Input: a DP-model $\mathcal{P} = \langle S, r, t, \bot, v_r, \tau, h \rangle$ 2: Input: a node merging operator \oplus 3: **Input:** an arc relaxation operator Γ 4: Create node r and add it to Fringe5: $\underline{x} \leftarrow \bot$ 6: $\underline{v} \leftarrow -\infty$ 7: while *Fringe* is not empty do $u \leftarrow Fringe.pop()$ 8: $\mathcal{B} \leftarrow Restricted(u)$ 9: if $v^*(\underline{\mathcal{B}}) > \underline{v}$ then 10: $\underline{v} \leftarrow v^*(\underline{\mathcal{B}})$ 11: $\underline{x} \leftarrow x^*(\underline{\mathcal{B}})$ 12:end if 13:if $\underline{\mathcal{B}}$ is not exact then 14: $\mathcal{B} \leftarrow Relaxed(u, \oplus, \Gamma)$ 15:if $v^*(\overline{\mathcal{B}}) > \underline{v}$ then 16:for all $u' \in \overline{\mathcal{B}}.exact_cutset()$ do 17:Fringe.add(u')18:end for 19:end if 20:end if 21:22: end while 23: return $(\underline{x}, \underline{v})$



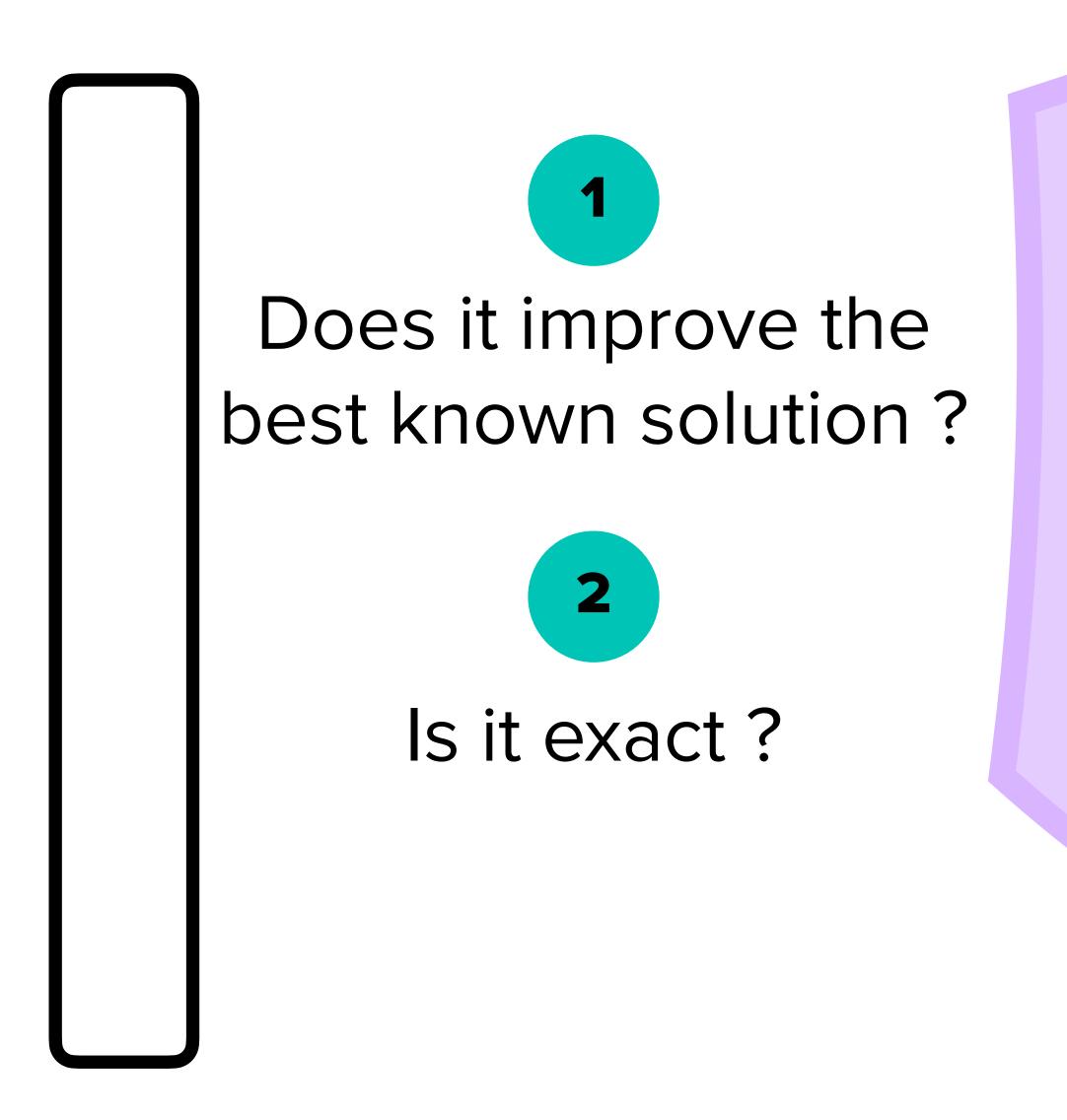






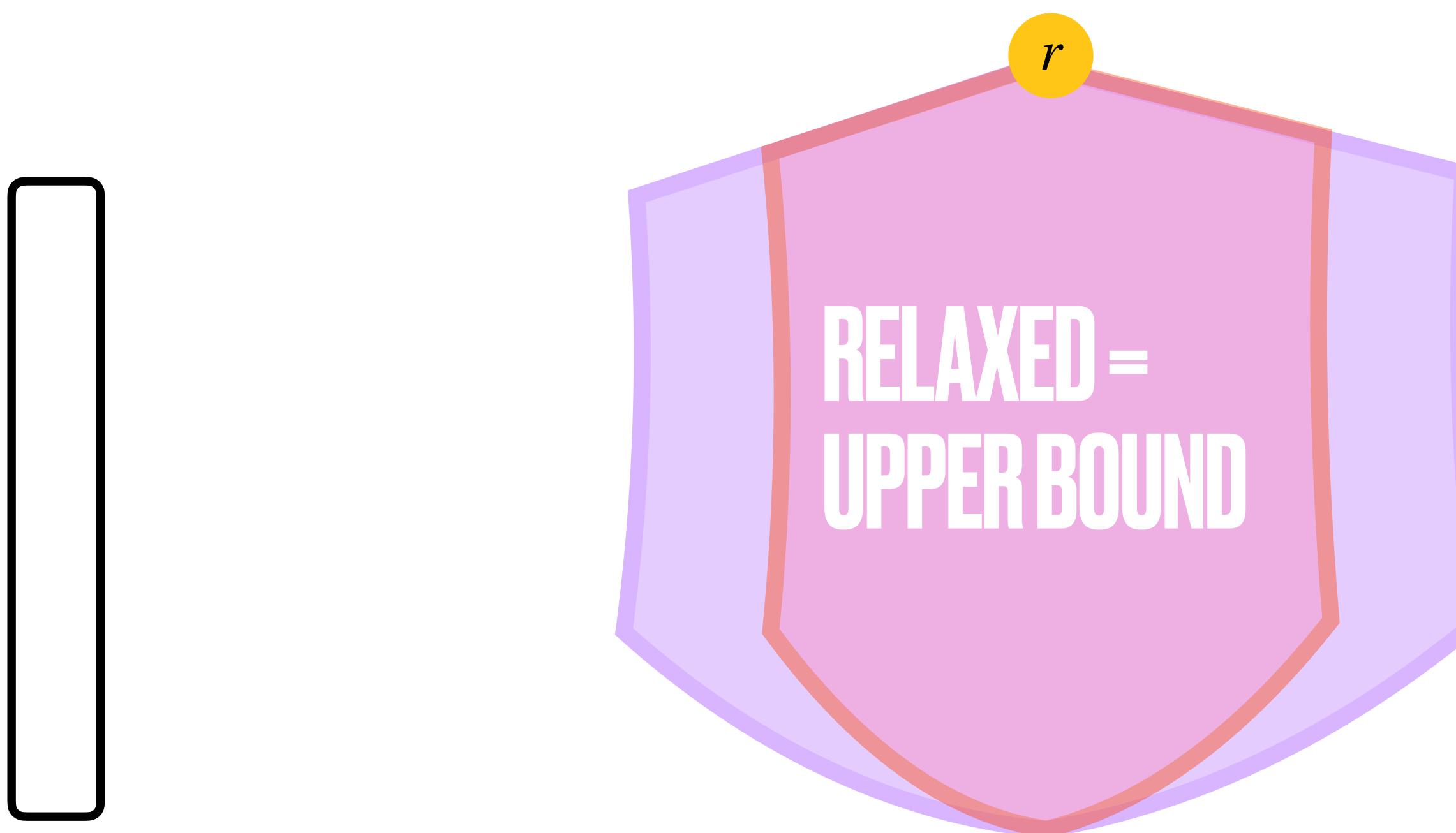
RESTRICTED = LOWER BOUND

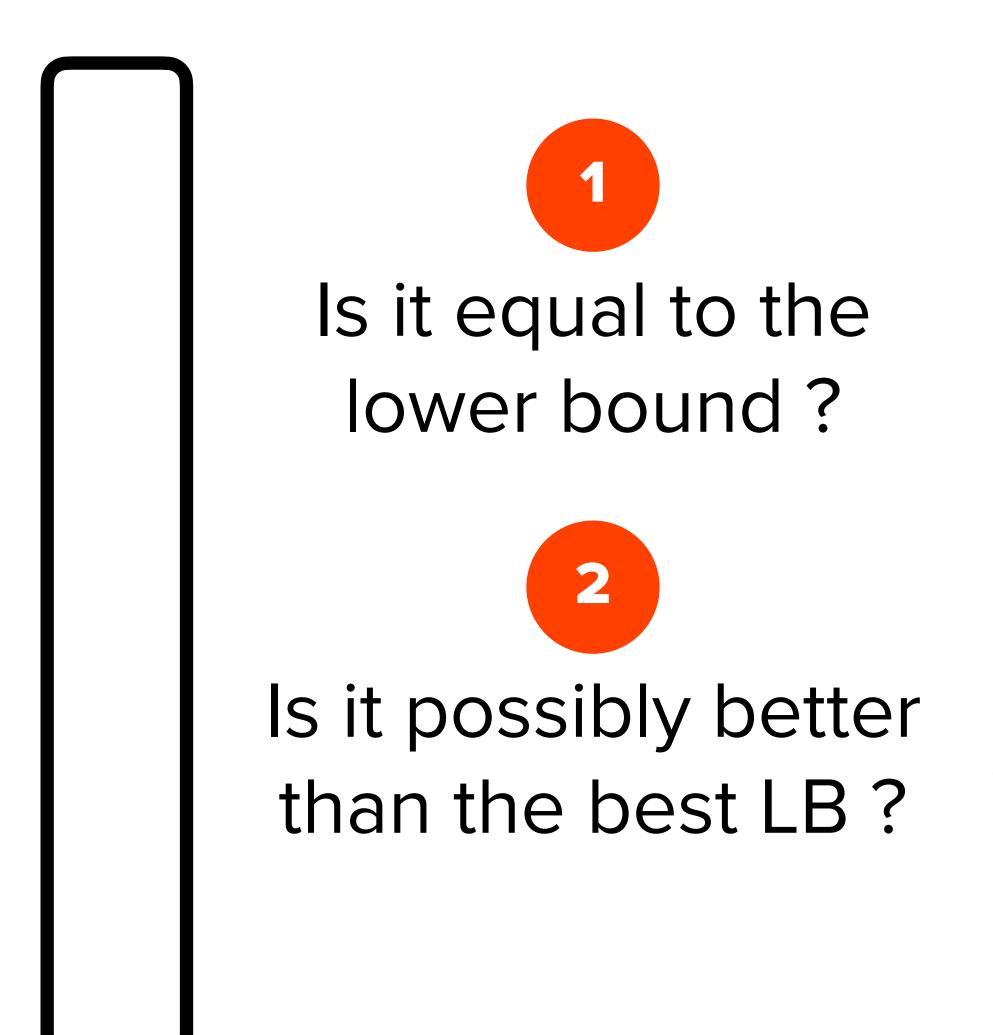
r

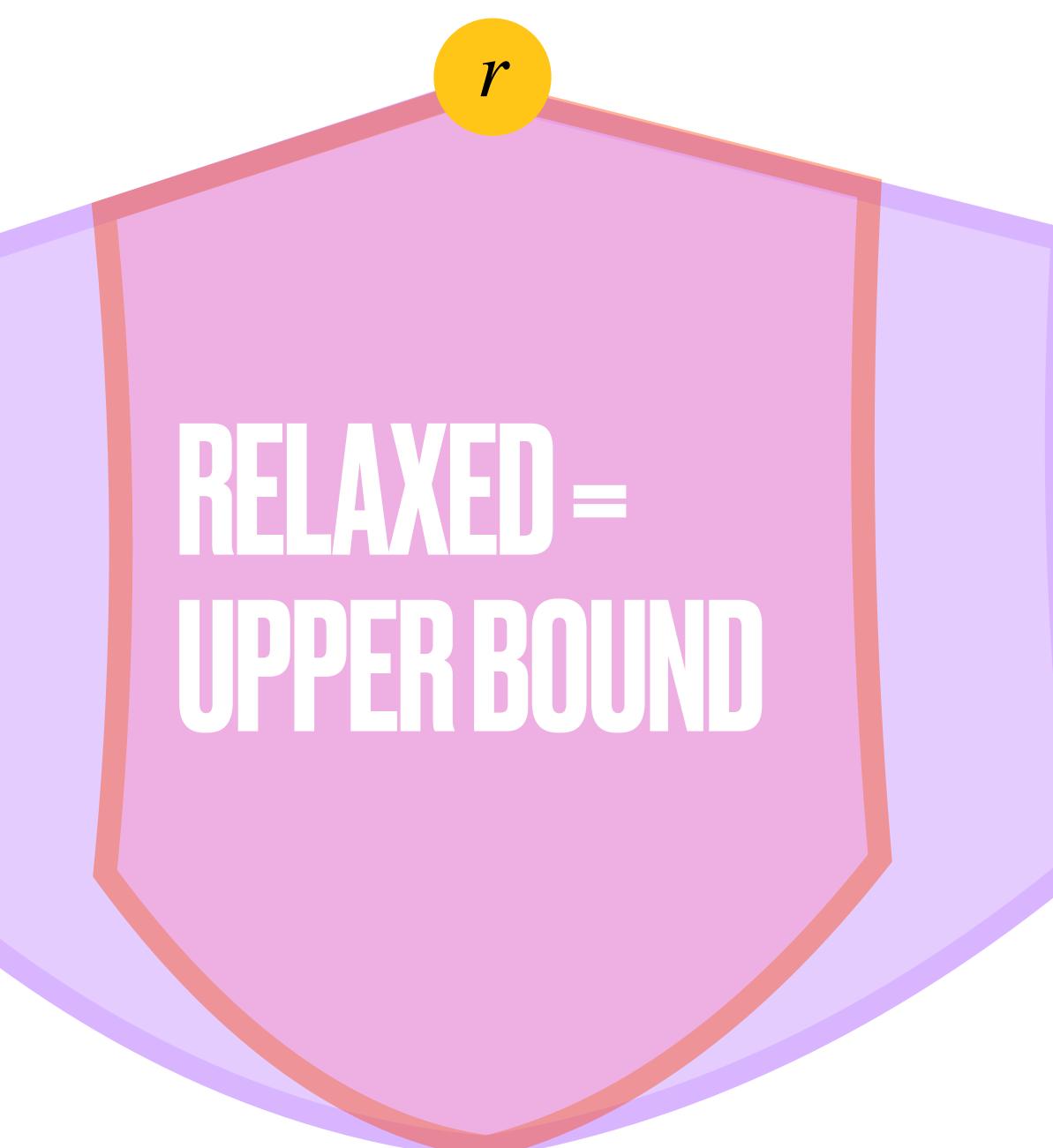


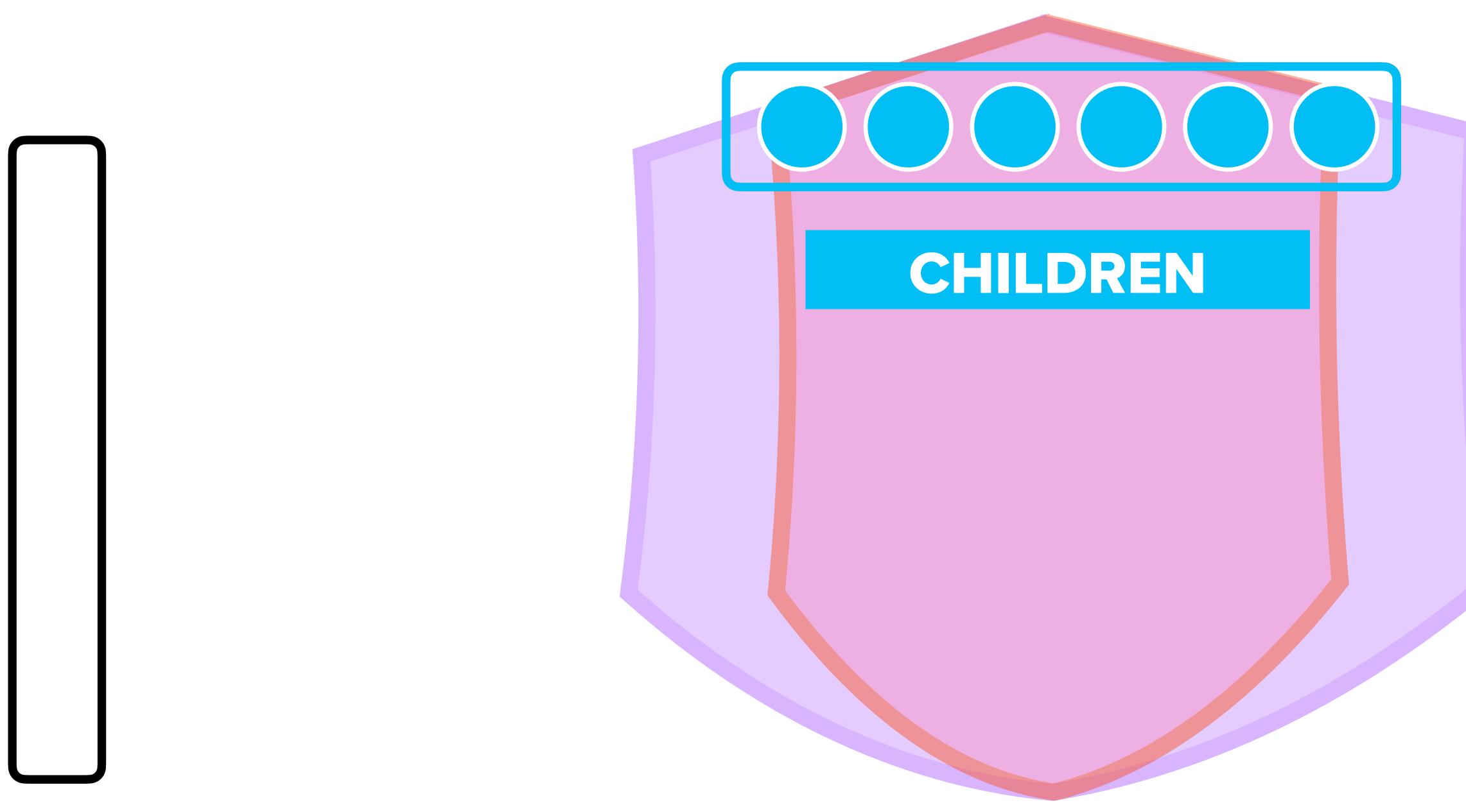
RESTRICTED = LOWER BOUND

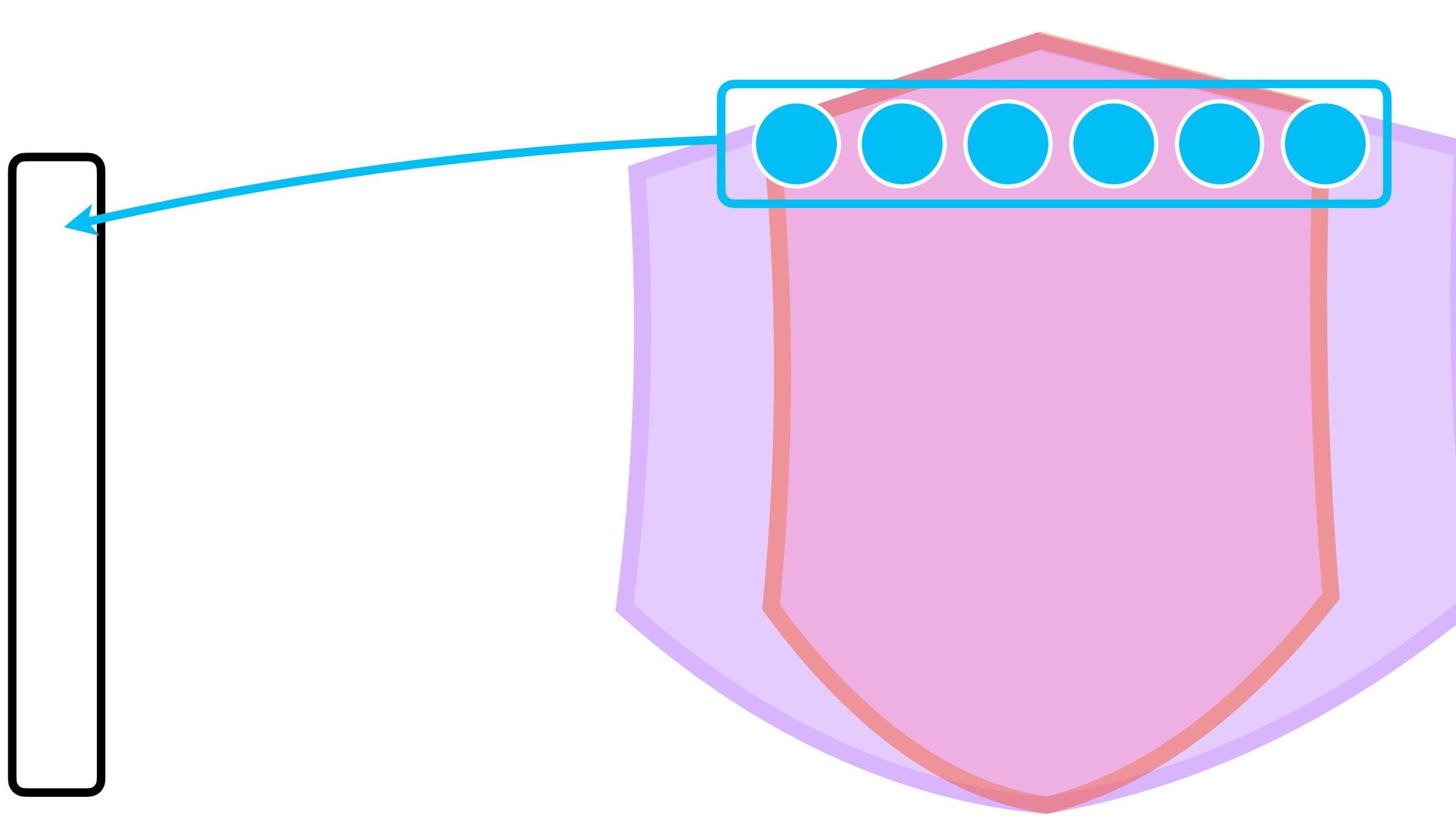
r

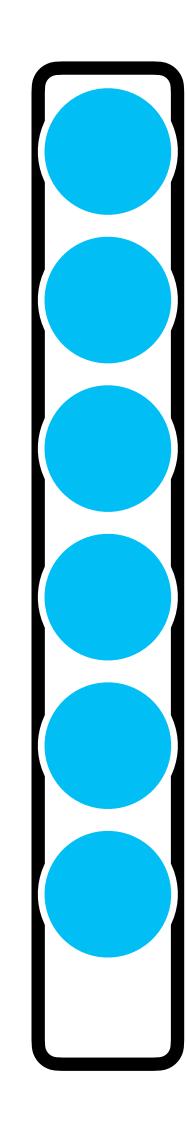


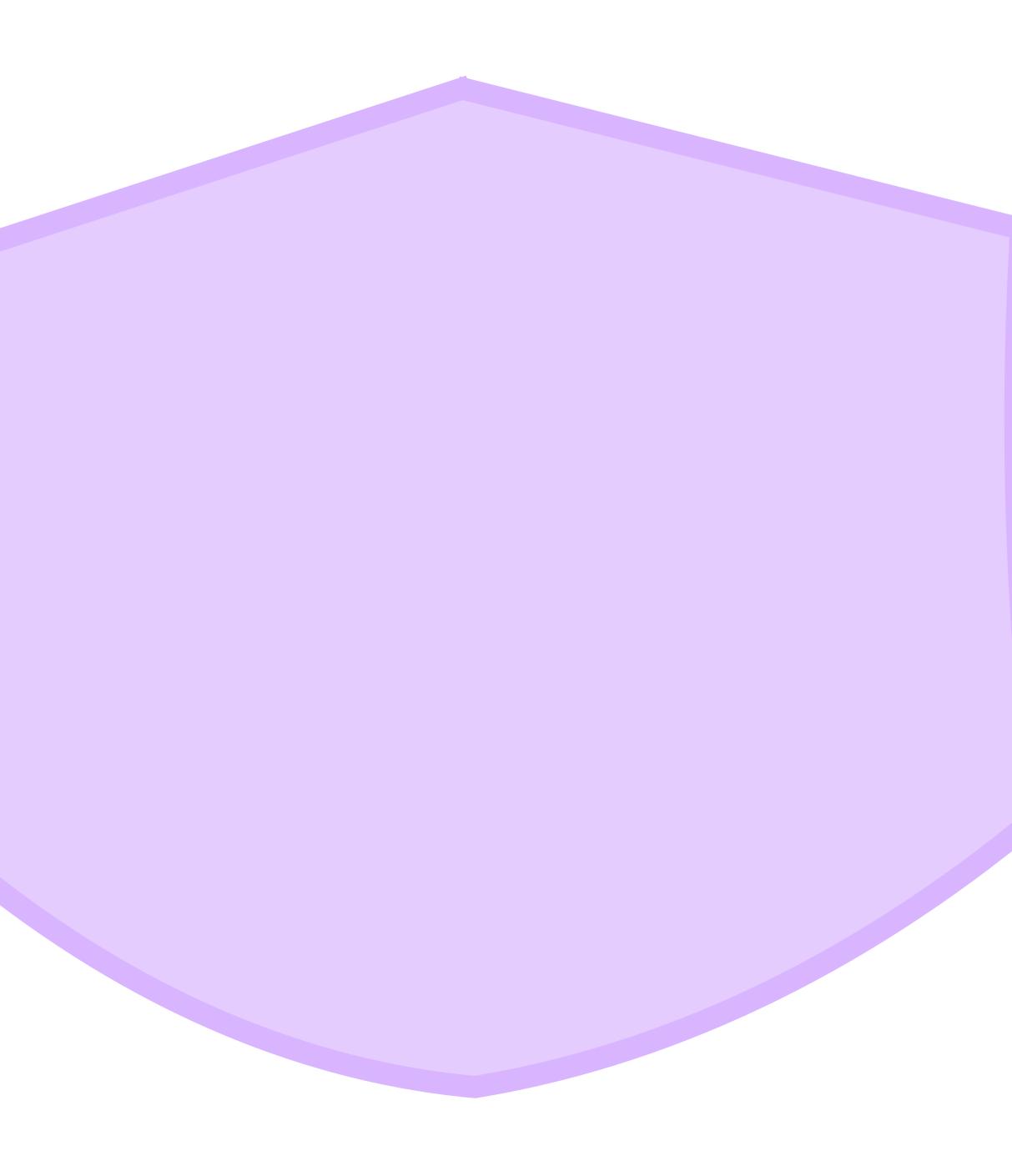


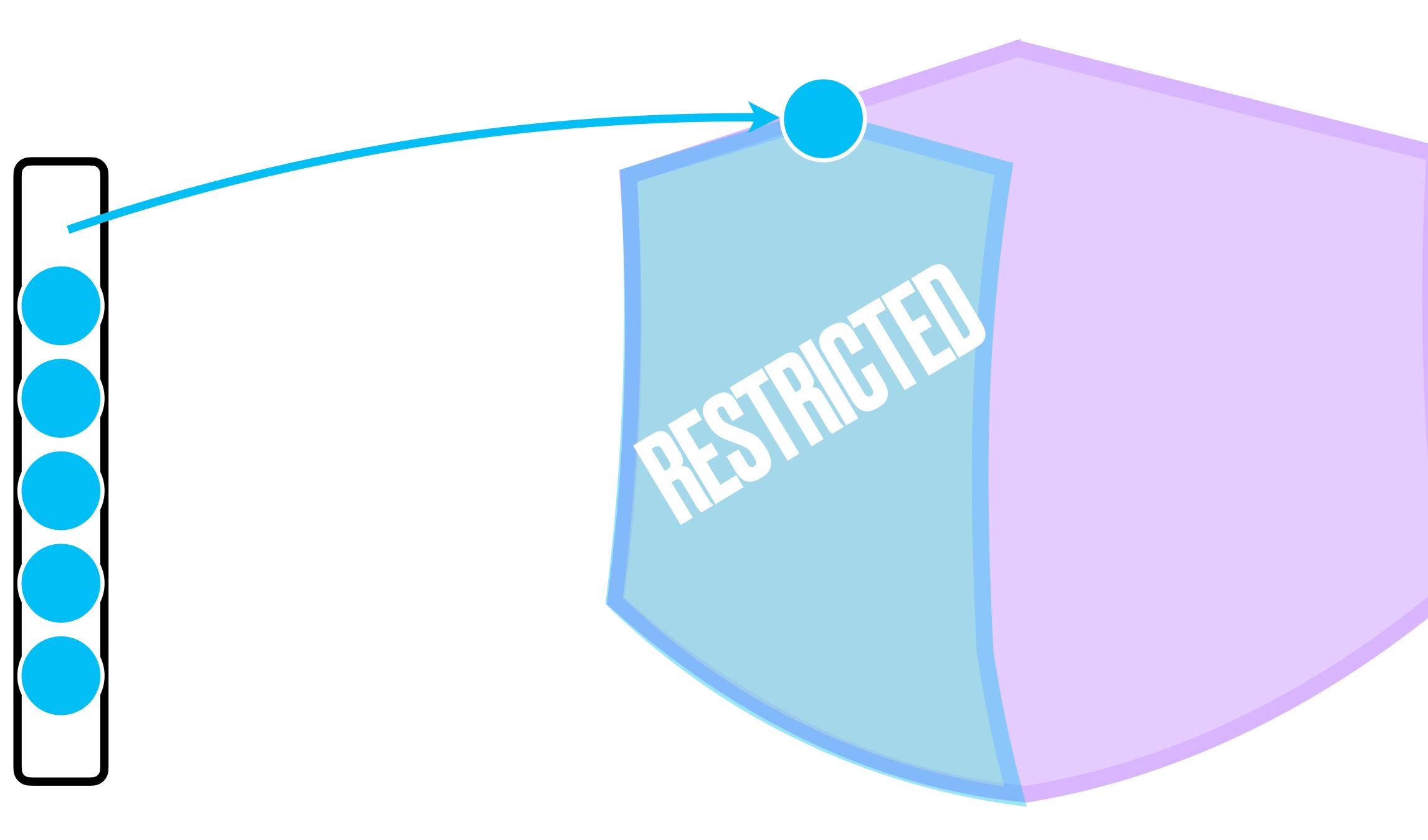








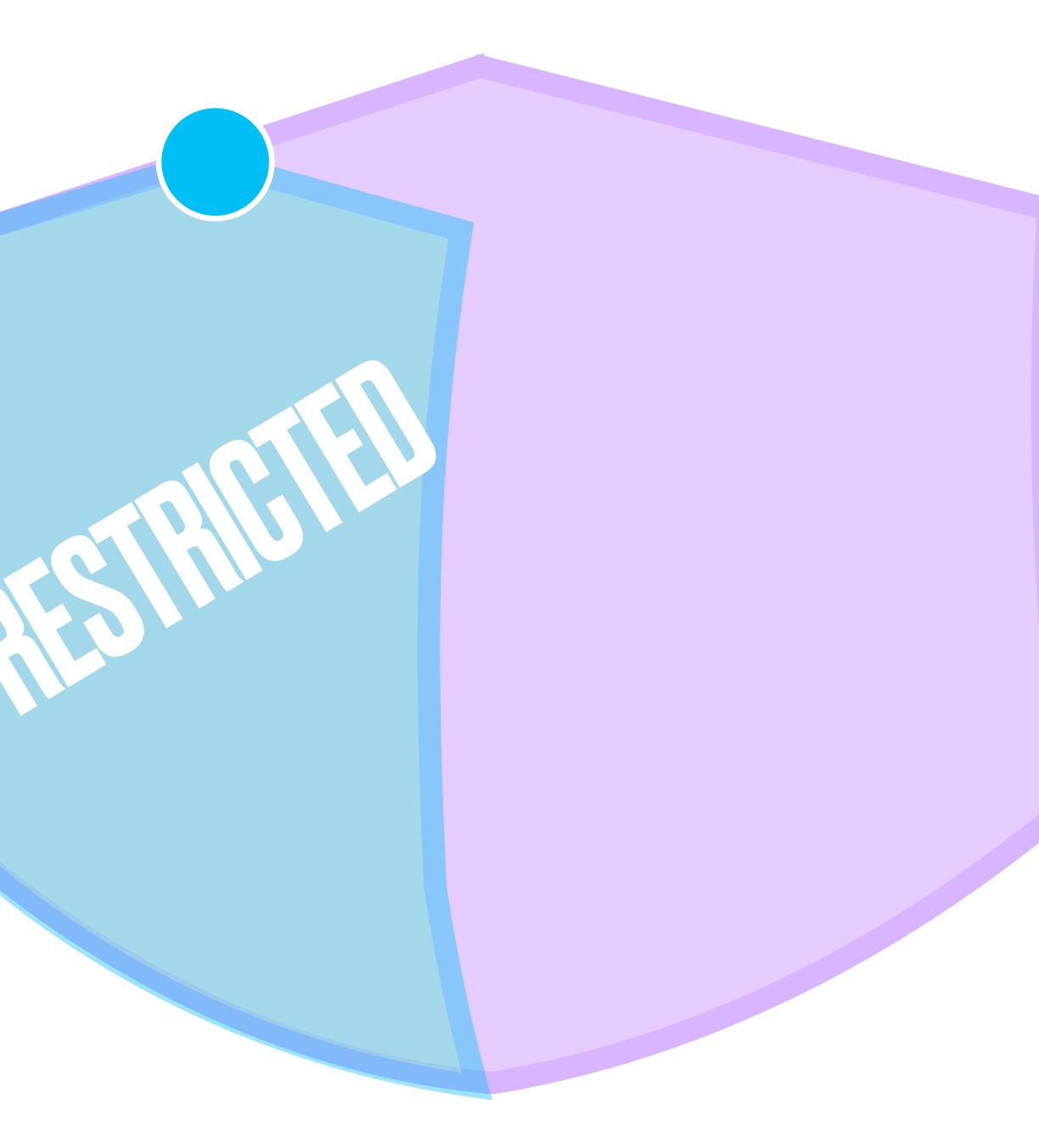


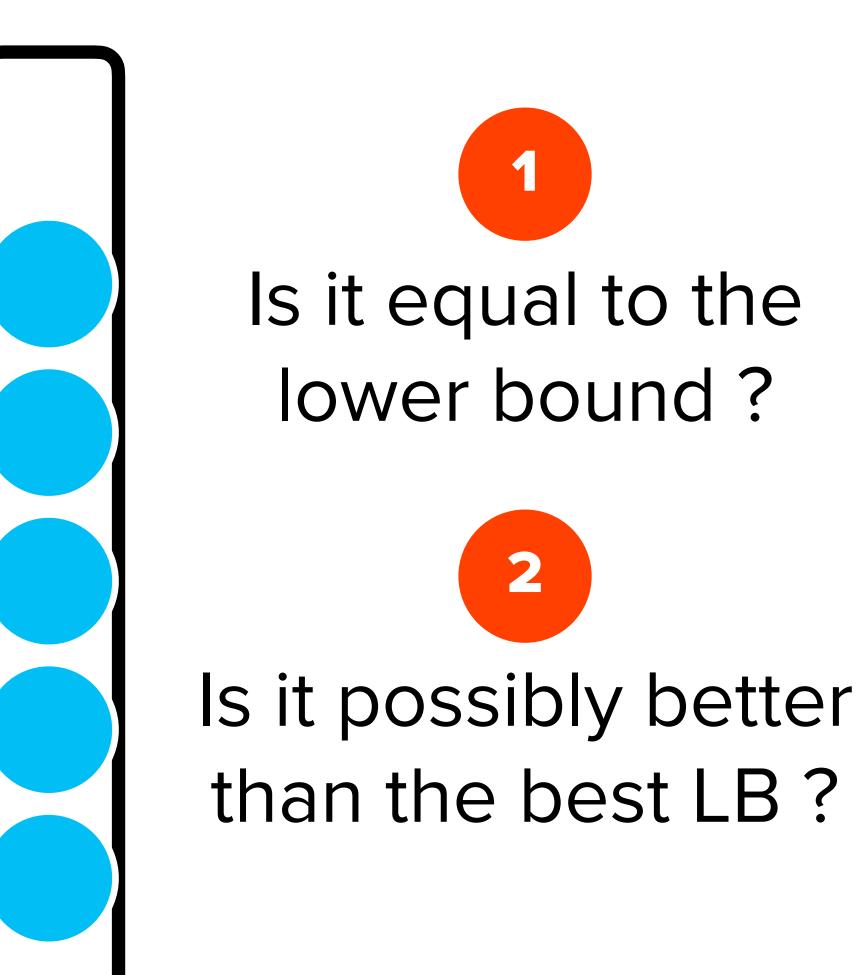


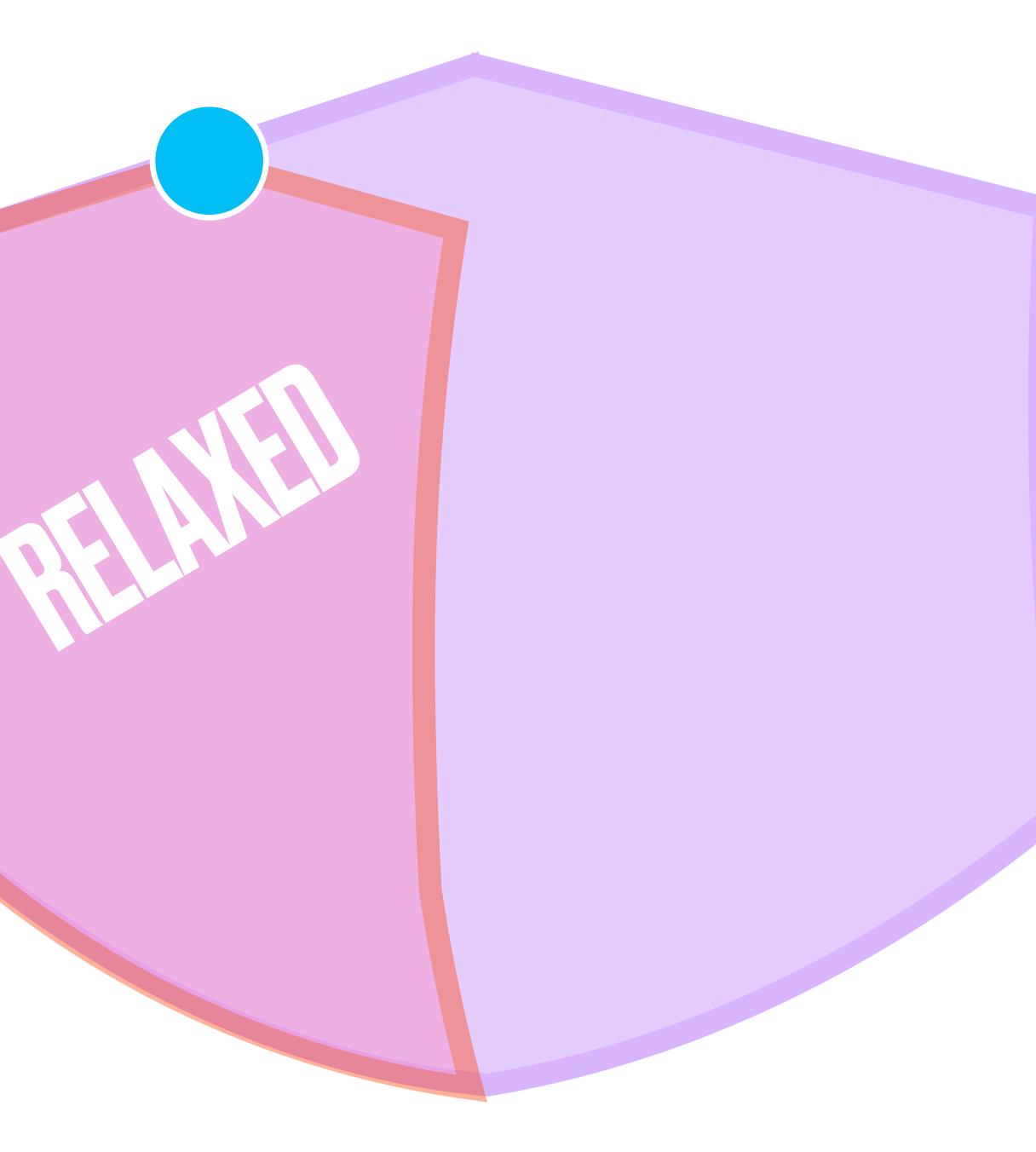
Does it improve the best known solution ?

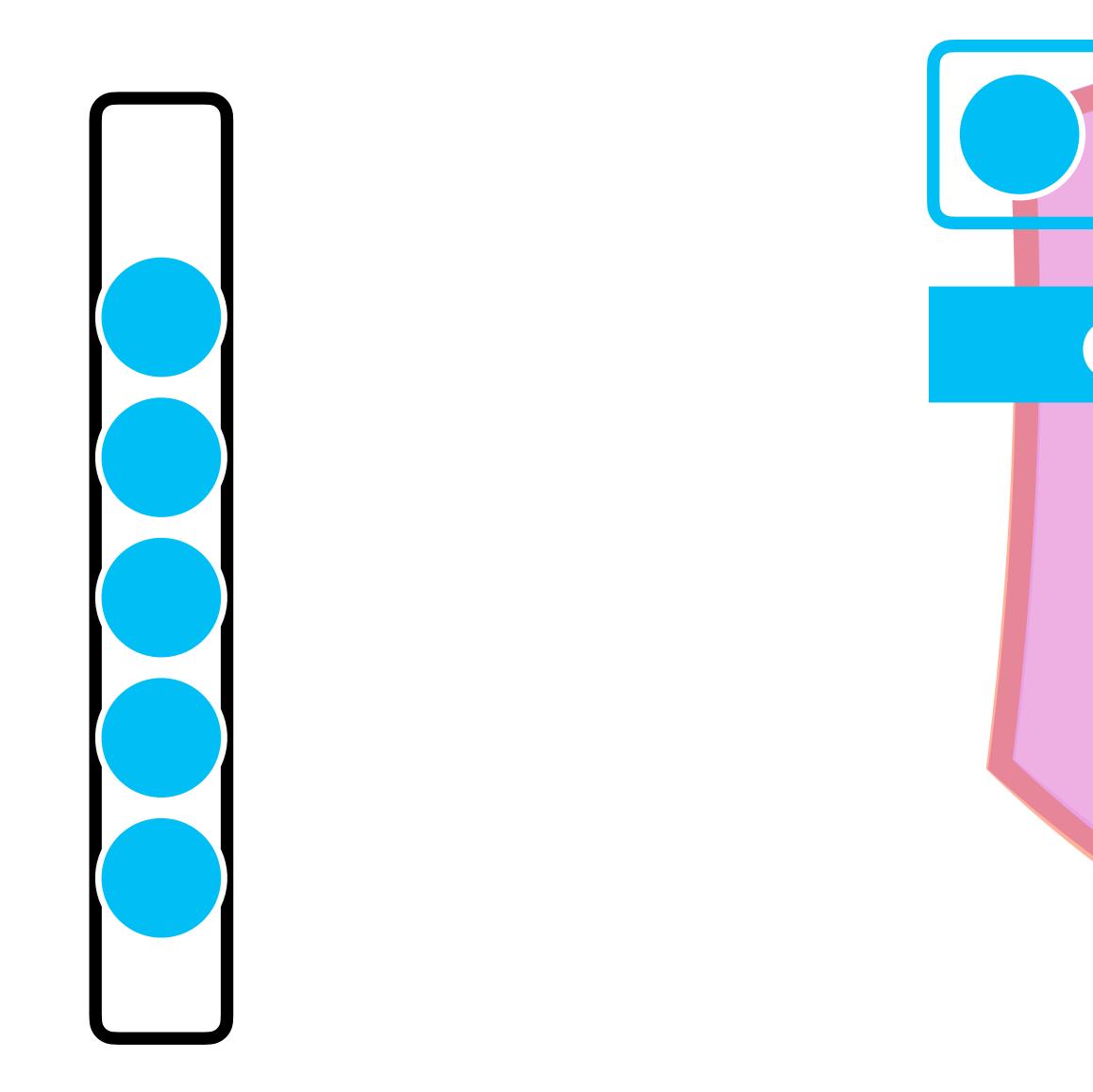
Is it exact ?

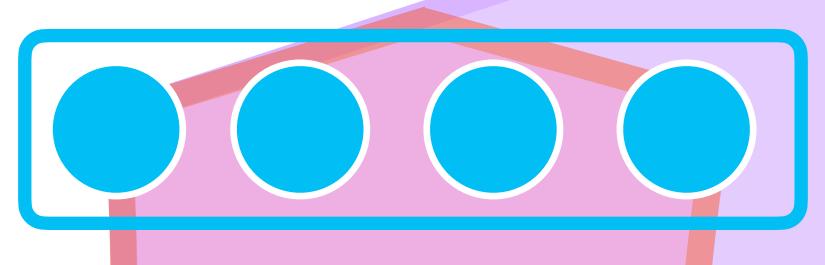
2





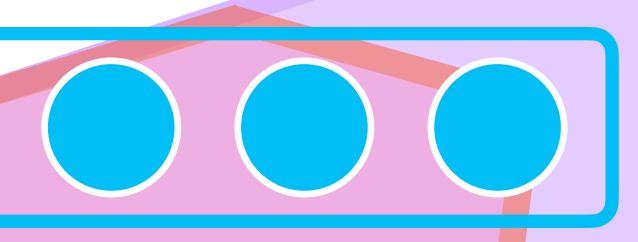






CHILDREN

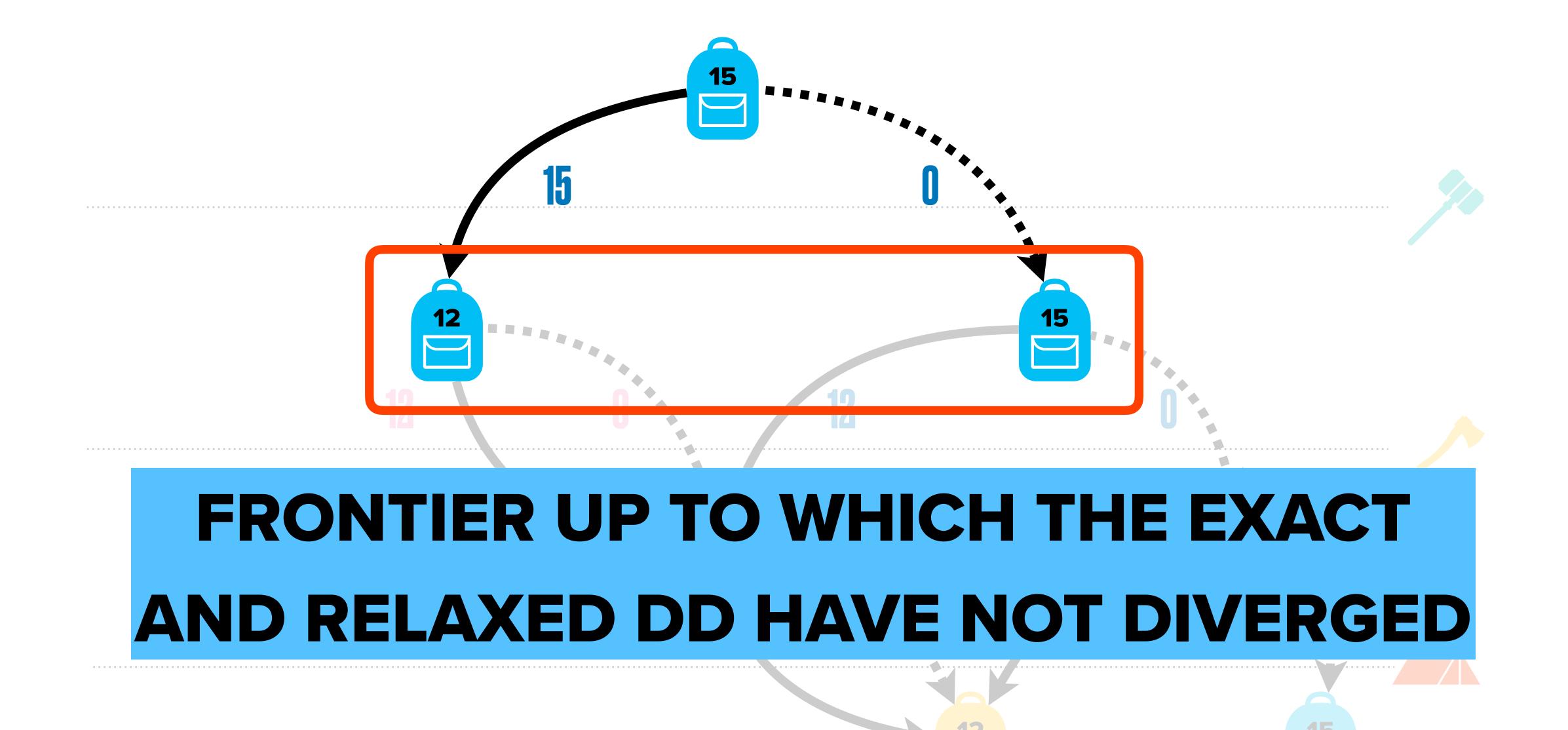
Repeat until frontier is empty...



How can we enumerate subproblems ?

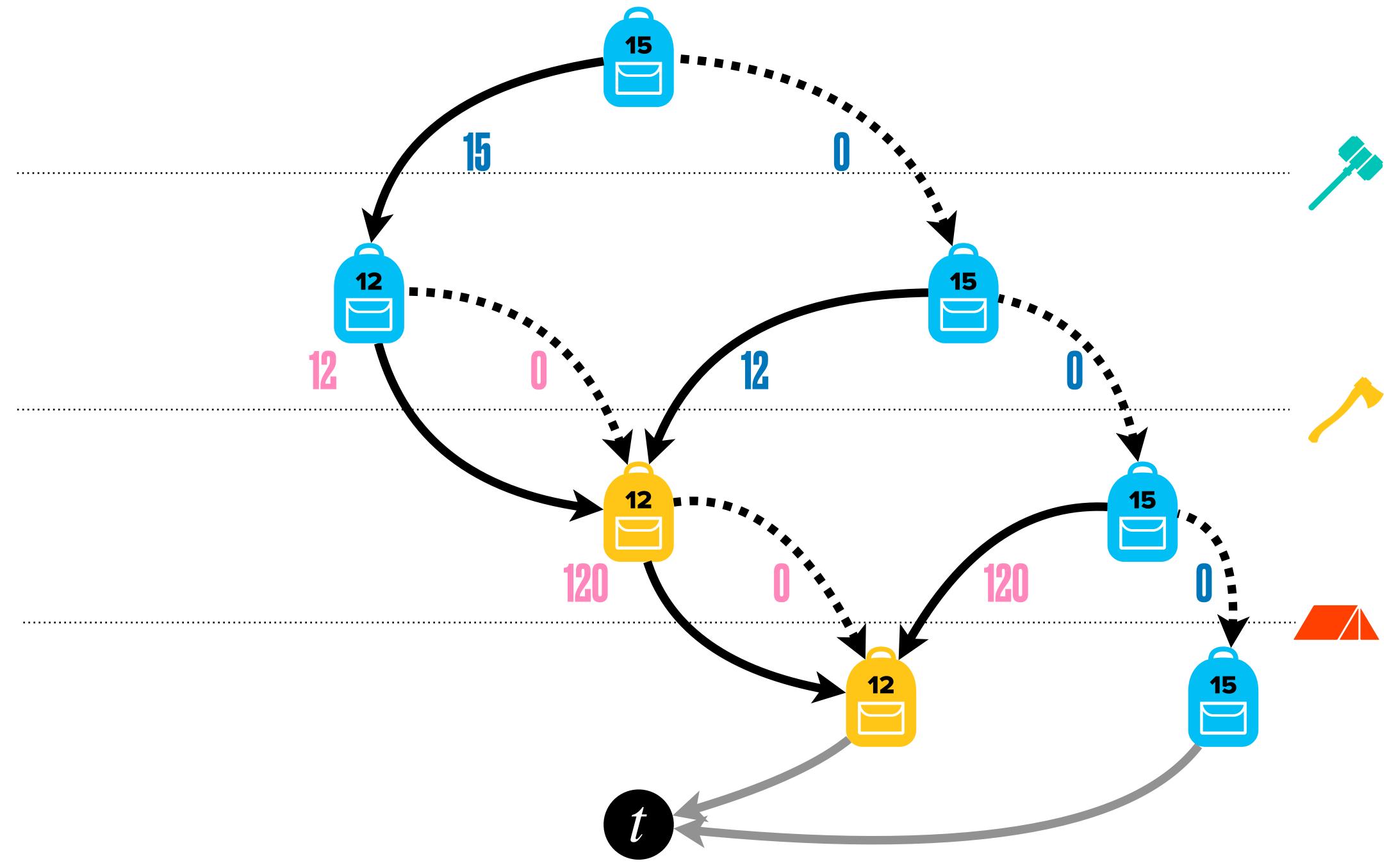
Exact Cutset

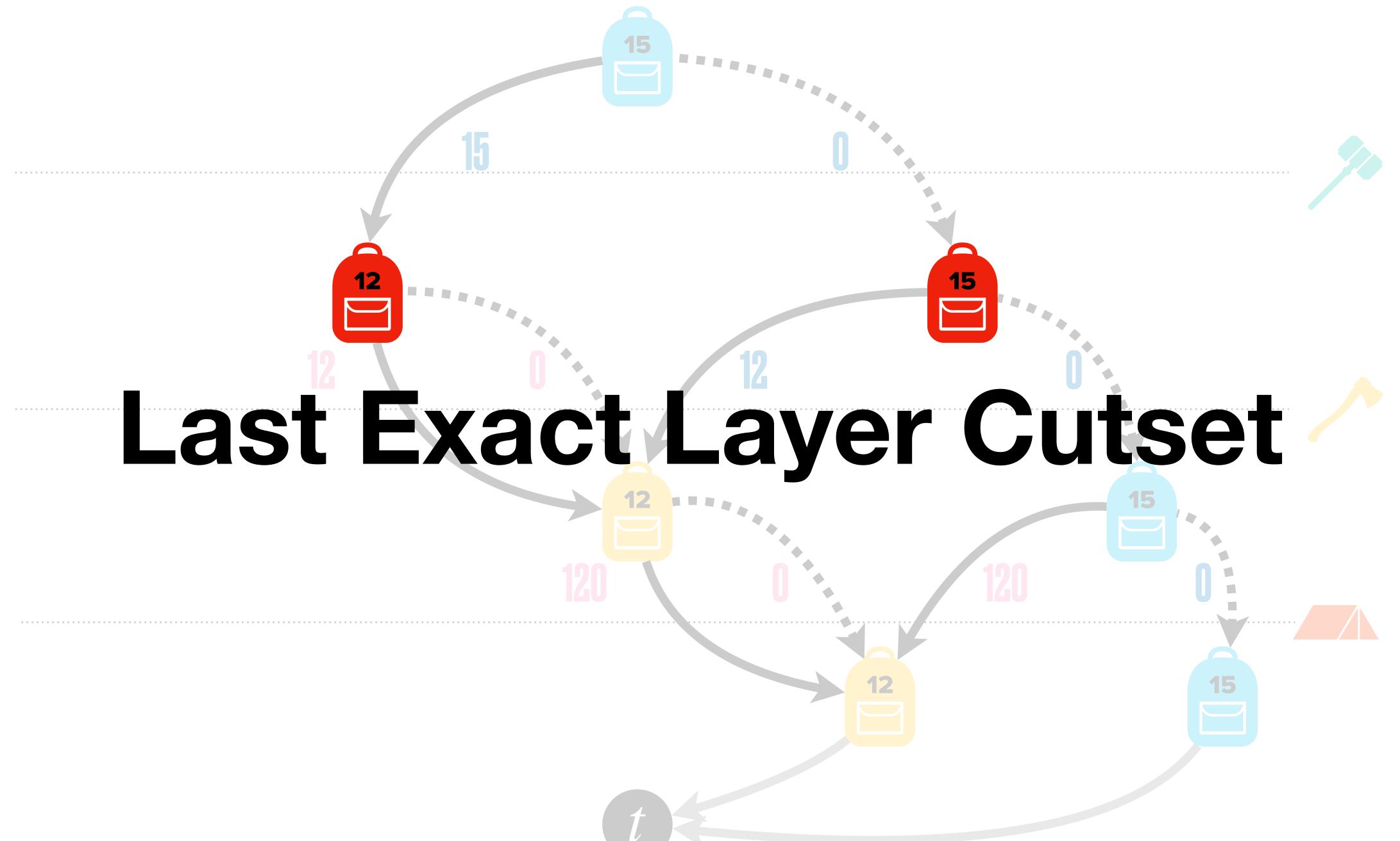
A subset \mathscr{C} of the exact nodes s.t. any r - t path must go through at least one node in \mathscr{C}

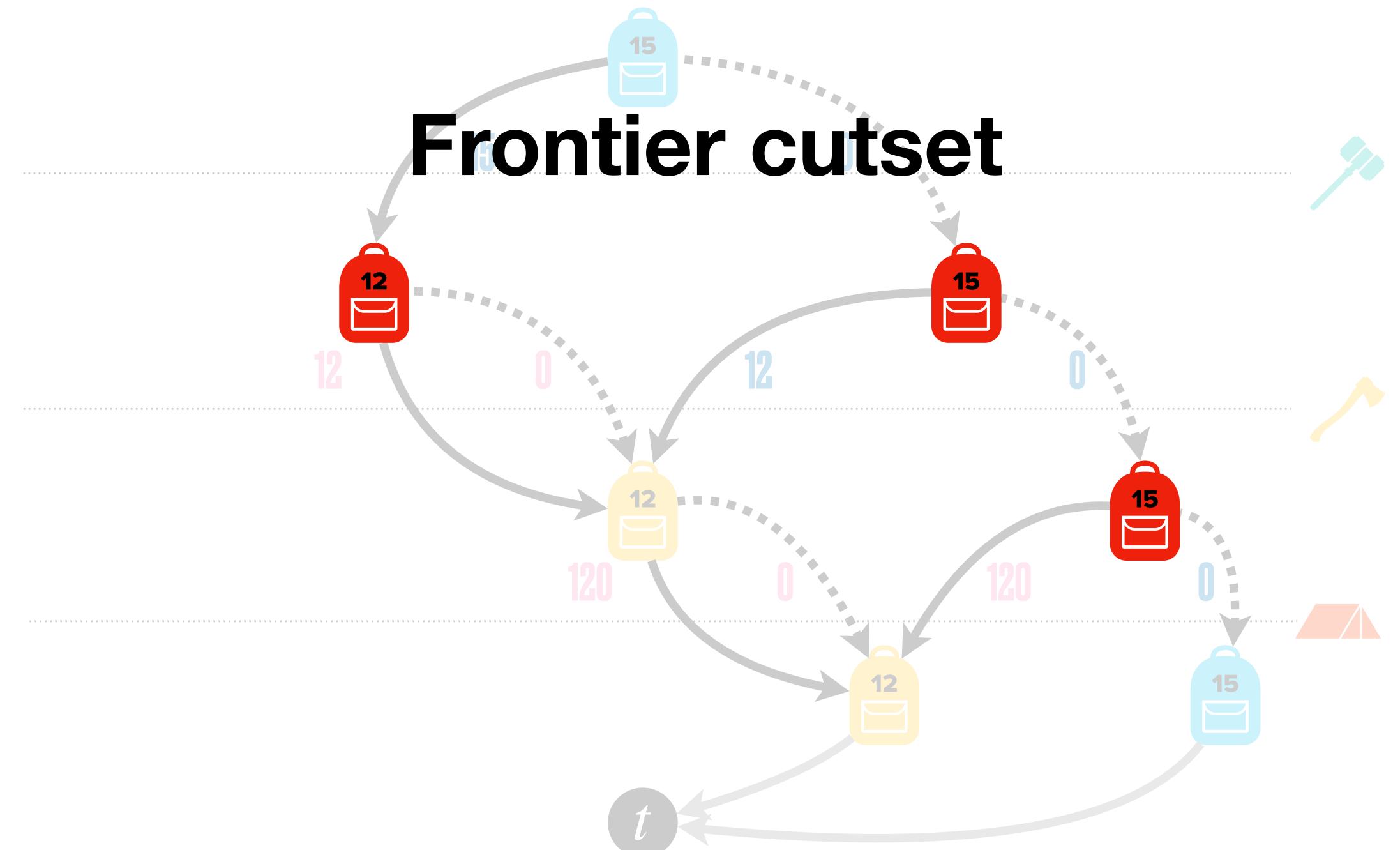


Exact Cutset

- There is always exists AT LEAST one exact cutset.
- The exact cutset is not guaranteed to be unique
 - First Exact Layer (Traditional branching)
 - Last Exact Layer (Deepest layer where all nodes are exact)
 - Frontier Cutset (Set of all the direct parents of inexact nodes)







Part 3: Code

Interfaces (Core)

public interface Problem<T> { int nbVars(); T initialState(); int initialValue();

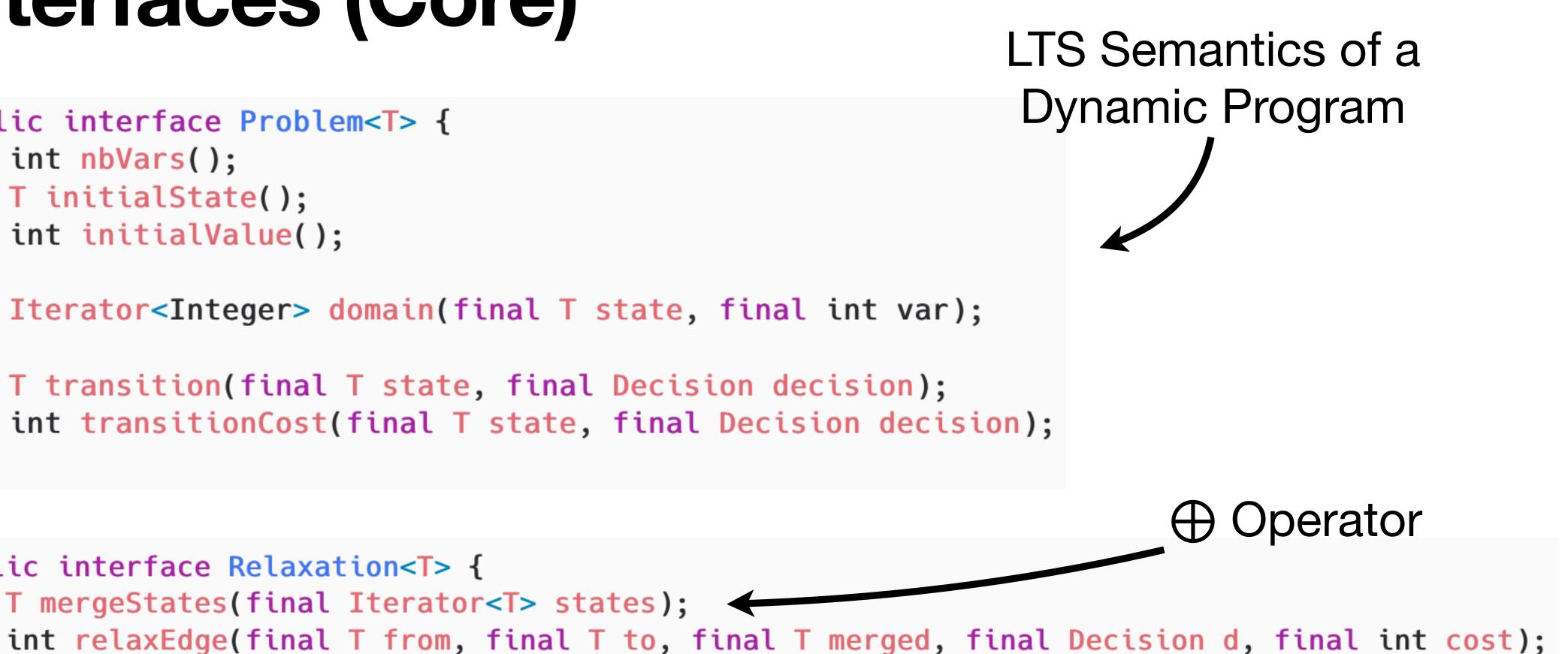
}

Iterator<Integer> domain(final T state, final int var);

T transition(final T state, final Decision decision); int transitionCost(final T state, final Decision decision);

public interface Relaxation<T> { T mergeStates(final Iterator<T> states); }

Operator

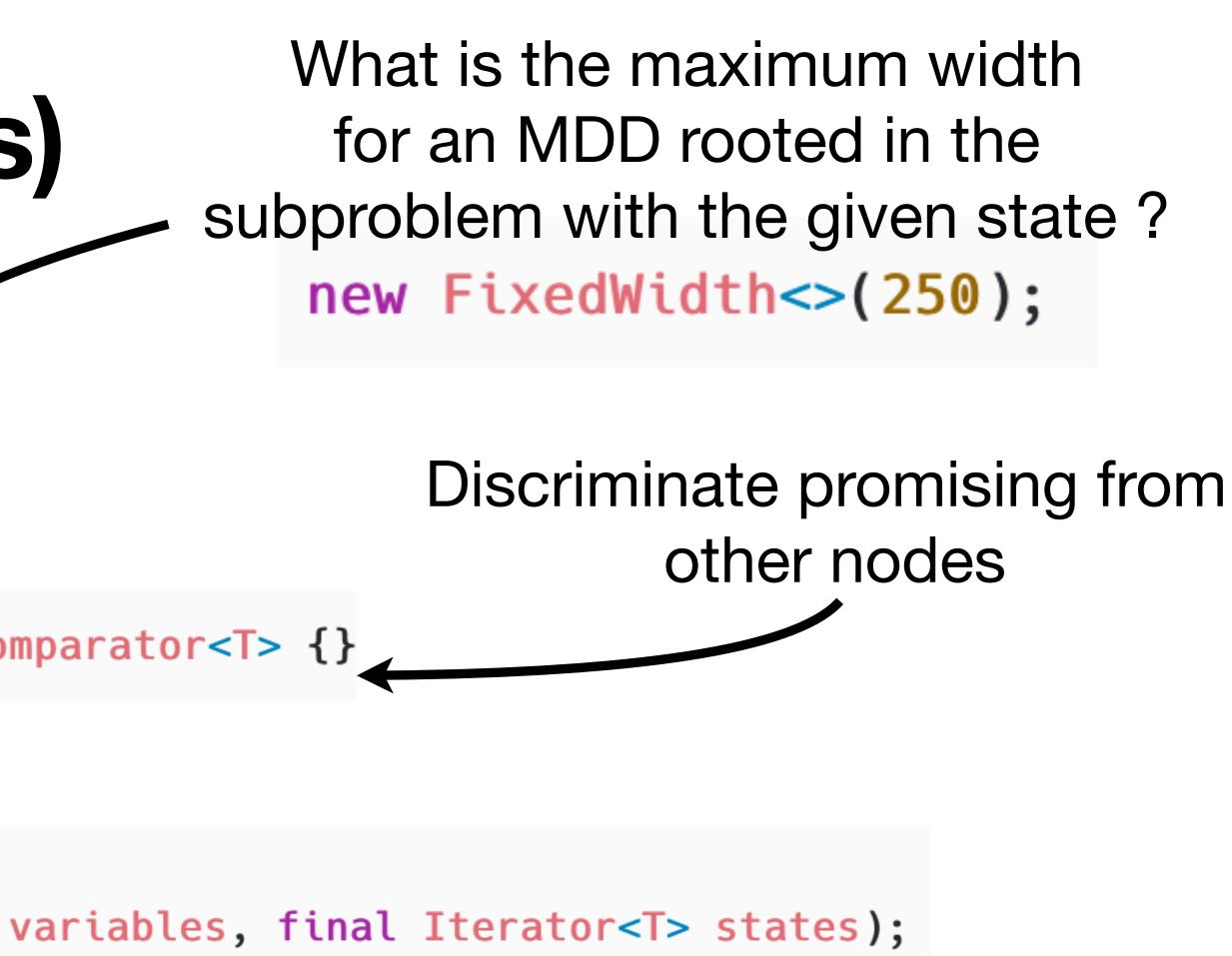


Interfaces (Heuristics)

public interface WidthHeuristic<T> {
 int maximumWidth(final T state);
}

public interface StateRanking<T> extends Comparator<T> {}

public interface VariableHeuristic<T> {
 Integer nextVariable(final Set<Integer> variables, final Iterator<T> states);
}
Order of the variables
new DefaultVariableHeuristic<>();

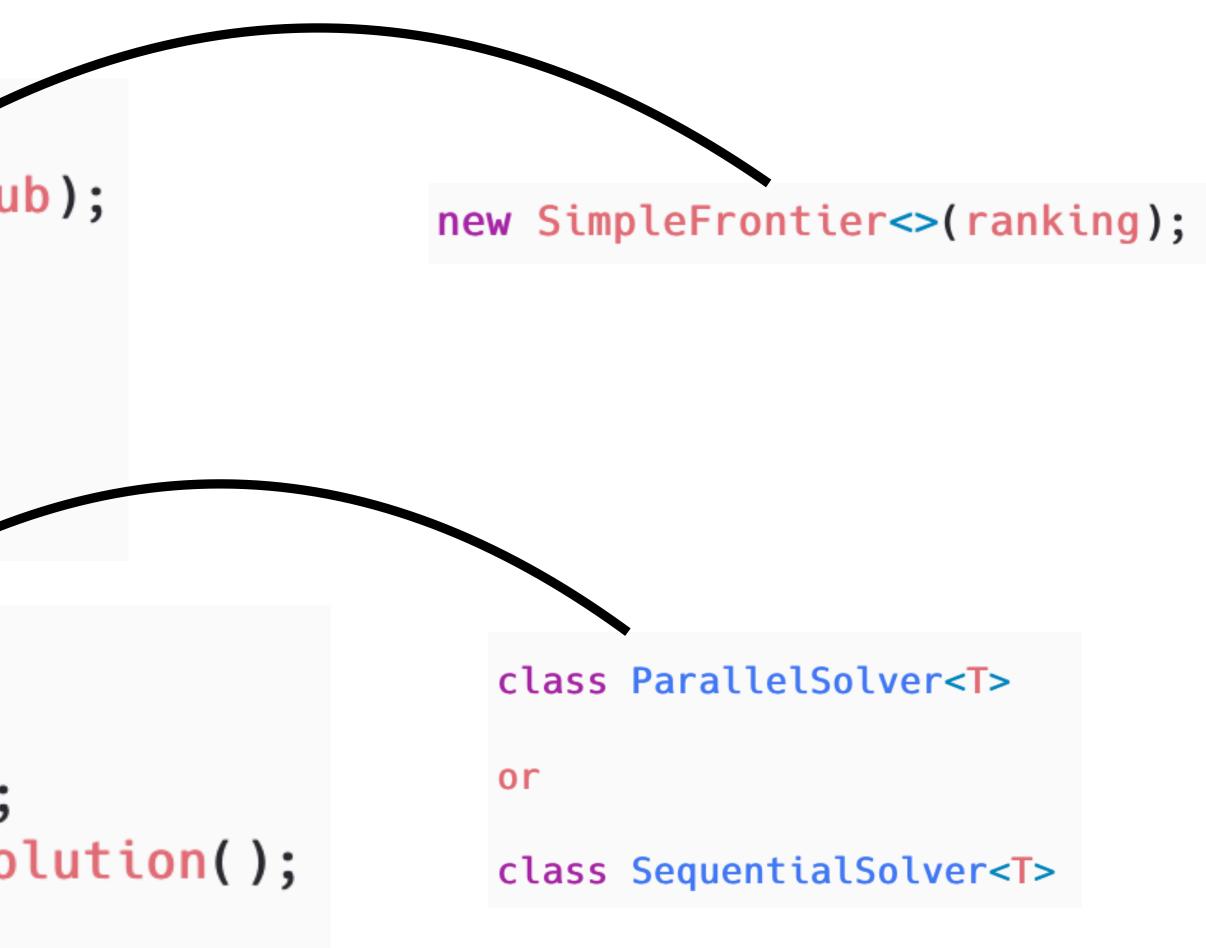


Interfaces (Utils)

public interface Frontier<T> {
 void push(final SubProblem<T> sub);
 SubProblem<T> pop();
 void clear();
 int size();
 boolean isEmpty();

```
public interface Solver {
   void maximize();
```

Optional<Integer> bestValue();
Optional<Set<Decision>> bestSolution();



Interfaces (DD)

public interface DecisionDiagram<T> { boolean isExact(); Optional<Integer> bestValue(); Optional<Set<Decision>> bestSolution(); Iterator<SubProblem<T>> exactCutset();

In practice, this interface is implemented for you:

The same DecisionDiagram object can be reused to compile different subproblems (for performance reasons)

```
void compile(final CompilationInput<T> input);
```

```
new LinkedDecisionDiagram<>();
```


Knapsack

Example

```
public class KnapsackProblem implements Problem<Integer> {
        final int
                  capa;
        final int[] profit;
        final int[] weight;
        public KnapsackProblem(final int capa, final int[] profit, final int[] weight) {
           this.capa = capa;
           this.profit = profit;
           this.weight = weight;
        }
        public int nbVars() { return profit.length; }
        public Integer initialState() { return capa;
        public int initialValue() { return 0;
        public Iterator<Integer> domain(Integer state, int var) {
           if (state >= weight[var]) {
               return Arrays.asList(1, 0).iterator();
           } else {
               return Arrays.asList(0).iterator();
        }
        public Integer transition(Integer state, Decision decision) {
            return state - weight[decision.var()] * decision.val();
        }
        public int transitionCost(Integer state, Decision decision) {
            return profit[decision.var()] * decision.val();
```

```
private static class KnapsackRelax implements Relaxation<Integer> {
    public Integer mergeStates(final Iterator<Integer> states) {
       int capa = 0;
       while (states.hasNext()) {
            final Integer state = states.next();
            capa = Math.max(capa, state);
       return capa;
    }
       return cost;
    }
```

public int relaxEdge(Integer from, Integer to, Integer merged, Decision d, int cost) {

public class KnapsackRanking implements StateRanking<Integer> { public int compare(final Integer o1, final Integer o2) { return o1 - o2; } }

public static void main(final String[] args) throws IOException { final KnapsackRelax relax = new KnapsackRelax(); final KnapsackRanking ranking = new KnapsackRanking(); final FixedWidth<Integer> width = new FixedWidth<>(250); final Solver solver = new ParallelSolver<Integer>(Runtime.getRuntime().availableProcessors(), problem, relax, varh, ranking, width, frontier);

```
solver.maximize();
int[] solution = solver.bestSolution();
System.out.println(Arrays.toString(solution));
```

- final KnapsackProblem problem = readInstance("example_file.txt");
- final VariableHeuristic<Integer> varh = new DefaultVariableHeuristic<>();
- final Frontier<Integer> frontier = new SimpleFrontier<>(ranking);

