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• A set of orders for each item (at most one per time-slot). Strong constraint 
(deadlines) 

• You must produce at most one per time slot (machine) to meet the deadlines 

• Stocking cost (when you produce too early) + transition cost (adaptation of the 
machine to minimize

Next Project: A Discrete Lot Sizing Problem

Item 1

Item 2

Item 3

Candidate

0 4 6
2 0 4
1 3 0

Transition Costs

0

5

10

Stocking Costs (per day)



Local Search: The idea

keep a single current state and move to neighbouring states to 
improve it 

Neighborhood



• Given a initial solution s,  

• N(s) is the neighborhood of s. 

• At a specific computation step, a neighbor may be legal or forbidden. 
L(N(s),s) is the set of legal moves of solution s. 

• The operator S is in charge of selecting the move

Generic Local Search

Procedure LocalSearch(f,N,L,S,s)

s⇤ := s;
for k := 1 to MaxTrials do

if sastifiable(s) ^ f(s) < f(s⇤) then
s⇤ := s ;

s := S(L(N(s), s), s) ;

return s⇤;



Improvement Heuristic

Procedure L-Improvement(N,s)

return {n 2 N |f(n) < f(s)};

Procedure S-Best(N,s)

N⇤ := {n 2 N |f(n) = mins2N f(s)} ;
return n 2 N⇤ with probability 1/|N⇤|;

Procedure LocalSearch(f,N,L,S,s)

s⇤ := s;
for k := 1 to MaxTrials do

if sastifiable(s) ^ f(s) < f(s⇤) then
s⇤ := s ;

s := S(L(N(s), s), s) ;

return s⇤;

Select one of the bests 
(ties broken randomly)

only accept an 
improving move



The problem: Local Minima

Global Optimum
Local Optimum

Two solutions 

1. Accept to degrade the solution (meta-heuristics) 

2. Enlarge the neighborhood

N1
N2



Sudoku

Cell with a violation >2

Cell with a violation =2

Cell with a violation =1

Cell with no violation

Solution Found when 
everything is Green

Given Cell

Moves: 
swap of two cells to 
decrease global violation

violation(cell) = number of cells in the same line/column/block with the same value



• Hard Constraints (cannot be violated) 
‣ Each number in {1..9} occurs 9x 

• Soft Constraints (can be violated) 
‣ Each number in {1..9} occurs 1x in a row 
‣ Each number in {1..9} occurs 1x in a column 
‣ Each number in {1..9} occurs 1x in a 3x3 block

Sudoku Hard and Soft Constraint



Sudoku: Computation of violation

Violation 3

+1 same column
+1 same block

+1: same line

Violation 3



Sudoku: Swap Moves 1



Sudoku: Swap Moves 2



Sudoku: Swap Moves 3



• Remain “more feasible” than having the right number of occurrences of each 
numbers: 
‣ Some soft constraints will be come hard

Idea 1



• Hard Constraints (cannot be violated) 
‣ Each number in {1..9} occurs 9x 
‣ Each number in {1..9} occurs 1x in a row 

• Soft Constraints (can be violated) 
‣ Each number in {1..9} occurs 1x in a block 
‣ Each number in {1..9} occurs 1x in a column

Sudoku Hard and Soft Constraint

Hard constraints are enforced by: 
1. initialization 
2. moves = swaps of two cells on a 

same row



• Using a Constrained Based Local Search (Library) 

• Facilitates the development of Local Search algorithms 
‣ you can add your constraints and objective functions 
‣ it will compute for you the violations 
‣ it will compute for you the delta’s (what if I exchange the values of two 

variables) 
‣ … 

• You can focus on the interesting part: moves and meta-heuristics. We will come 
back to that later, let’s first understand the magic

Implementation



int[] instance1 = new int[]{
        0, 0, 0, 1, 0, 0, 0, 0, 0,
        0, 6, 0, 0, 7, 3, 0, 0, 4,
        0, 0, 8, 4, 0, 0, 6, 3, 0,
        8, 0, 0, 6, 0, 0, 0, 9, 0,
        0, 3, 0, 0, 0, 0, 0, 5, 0,
        0, 4, 0, 0, 0, 7, 0, 0, 2,
        0, 7, 5, 0, 0, 4, 1, 0, 0,
        3, 0, 0, 9, 5, 0, 0, 7, 0,
        0, 0, 0, 0, 0, 6, 0, 0, 0};

IntVarLS [] grid;
IntVarLS violation;
ConstraintSystem constraintSystem;
ArrayList<Pair> possibleSwaps;

SolverLS ls = makeSolver();

grid = makeIntVarArray(9*9, i -> makeIntVar(ls,init[i]));

ArrayList<Constraint> constraints = new ArrayList<>();
for (int k = 0; k < 9; k++) {
    final int i = k;
    Constraint allDiffCol = new AllDifferent(makeIntVarArray(n, j -> grid[j * 9 + i]));
    Constraint allDiffBlock = new AllDifferent(makeIntVarArray(n, j -> grid[blocks.get(i).get(j)]));
    constraints.add(allDiffBlock);
    constraints.add(allDiffCol);
}

constraintSystem = new ConstraintSystem(constraints.toArray(new Constraint[]{}));
violation = constraintSystem.violation();

CBLS Sudoku Model
4 2 3 1 5 6 7 8 9  
1 6 2 9 7 3 5 8 4  
1 2 8 4 5 7 6 3 9  
8 2 3 6 5 4 7 9 1  
1 3 2 4 8 6 7 5 9  
1 4 3 9 5 7 6 8 2  
2 7 5 6 3 4 1 8 9  
3 2 1 9 5 6 8 7 4  
1 2 3 4 5 6 7 8 9 

decision variables: value in each cell

An object responsible to compute the total violation

Constraint for rows and blocks



CBLS Sudoku Model

// swap two cells on the same line
possibleSwaps = new ArrayList<>();
for (int l = 0; l < 9; l++) {
    for (int i = 0; i < 9; i++) {
        for (int j = i+1; j < 9; j++) {
            int v1 = l*9+i;
            int v2 = l*9+j;
            if (problem[v1] == 0 && problem[v2] == 0) {
                possibleSwaps.add(new Pair(v1,v2));
            }
        }
    }
}
public int swapDelta(int a, int b) {
    int before = violation.value();
    swap(a,b);
    int after = violation.value();
    swap(a,b);
    return after-before;
}

public void swap(int a, int b) {
    int va = grid[a].value();
    int vb = grid[b].value();
    grid[a].setValue(vb);
    grid[b].setValue(va);
}

Compute the delta if 
exchanging values in 

position a and b

Exchange values in position 
a and b

Pre-compute all the possible 
swap position not involving 

hint position



CBLS Sudoku Greedy Search
public void solve() {
    int iter = 1;
    while (constraintSystem.violation().value() > 0){
        iterationGreedy(iter++);
    }
}
public void iterationGreedy(int iter) {
    Pair bestSwap = bestSwap();
    grid[bestSwap.a].swap(grid[bestSwap.b]);
    notifyAllObservers(iter,bestSwap);
}

public Pair bestSwap() {
    Pair bestSwap = null;
    int bestDelta = Integer.MAX_VALUE;
    for (Pair p : possibleSwaps) {
        int delta = violation.getSwapDelta(grid[p.a],grid[p.b]);
        if (delta < bestDelta) {
            bestDelta = delta;
            bestSwap = p;
        }
    }
    return bestSwap;
}

One iteration

Find the best exchange

Solve until feasible solution found (zero violation)



Problem if too greedy

search is too « greedy » 
there is not enough 

diversification



• Avoid direct and short cycles in order to diversify and escape from local minima
Idea 2



Tabu Meta Heuristic

Global Optimum

a

b c

• From a you move to b (no better choice in neighboring N) 

• But the reverse move becomes tabu, you don’t want to come to a 
for a while (duration = tabu tenure).

N



CBLS Sudoku Search with Tabu

public void solve() {
    int iter = 1;
    int tabu = 20;
    while (constraintSystem.violation().value() > 0){
        iterationTabu(iter++,tabu);
        return;
    }
}

public void iterationTabu(int iter, int tabu) {
    Pair bestSwap = bestSwapNonTabu(iter);
    grid[bestSwap.a].swap(grid[bestSwap.b]);
    bestSwap.iter = iter + rand.nextInt(tabu);
    notifyAllObservers(iter,bestSwap);
}

public Pair bestSwapNonTabu(int iter) {
    Pair bestSwap = null;
    int bestDelta = Integer.MAX_VALUE;
    for (Pair p : possibleSwaps) {
        if (p.iter < iter) {
            int delta = violation.getSwapDelta(grid[p.a],grid[p.b]);
            if (delta < bestDelta) {
                bestDelta = delta;
                bestSwap = p;
            }
        }
    }
    return  bestSwap;
}

One iteration: bestSwap and set 
this swap tabu for a random 

number of iterations

Find the best exchange that 
is not tabu

Solve until feasible solution 
found (zero violation)



Sudoku with Tabu Search

Because of the tabu, you 
have to downgrade the 

solution

Able to reach 0 violation.  
Tabu offers a good Diversification/

Intensification tradeoff

but you are never too far from 
the optimum



• Aspiration 
‣ Maintain the current best violation 
‣ A move is not considered tabu if it can lead to the best so far objective violation 

• Restart 
‣ Every X iterations, introduce random perturbations (for instance random swap 

moves)

Other possible improvements



• A neighborhood is connected if and only if for each solution s, there exists a path 
to an optimal solution s*. 

• Two advantages: 
‣ You don’t necessarily need a restarting strategy 
‣ Randomized heuristics where there is a non zero probability of accepting a 

neighbor k ∈ N(s) for each solution s, may be guaranteed to reach a global 
optimum (example: simulated annealing). 

• To prove a neighborhood is connected, you must provide an algorithm to 
transform any solution s1 into a solution s2 by selecting the moves allowed by 
the neighborhood. 

• Q: Is the swap move for sudoku a connected neighborhood? Why ?

Connected-Neighborhood



CBLS Solver
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The problem: Local Minima

Global Optimum
Local Optimum

Two solutions 

1. Accept to degrade the solution (meta-heuristics) 

2. Enlarge the neighborhood

N1
N2



TSP Move

Can you improve this tour ?



2 Opt

Disconnect by removing two edges, and re-construct 
the tour. 

Euclidian TSP: optimal solution cannot have crossing 
edges. This move will avoid to have crossing edges.



2 Opt Evolution



• Is the 2Opt move a connected neighbourhood for the TSP?
Is 2-Opt a connected?

1 2

3
4

5

7
8

910

11

1,2,3,5,6,7,8,4,9,10,11

Solution represented as a permutation array



2-Opt and connectivity
1 2

3
4

5

6

7
8

910

11

1 2

3
4

5

6

7
8

910

11

1,2,3,5,6,7,8,4,9,10,11 1,2,3,4,8,7,6,5,9,10,11

A 2-Opt move amounts at « reversing » a 
subsequence of the tour

3,1,2,4,7,6,5,8,9,11,10
assume this is the optimal solution s*, 

given a current solution s, can you find a 
sequence of 2-opt move to transform s 

into s* ?



Working example

0 1 2 3 4 5 6 7 8 9 10 11

0 0 355 444 453 225 221 136 166 326 372 118 45

1 355 0 135 311 212 160 242 278 509 636 473 365

2 444 135 0 219 243 223 312 321 511 658 559 441

3 453 311 219 0 232 269 324 288 367 527 546 429

4 225 212 243 232 0 63 92 78 297 426 330 210

5 221 160 223 269 63 0 90 118 356 476 336 219

6 136 242 312 324 92 90 0 66 306 407 247 129

7 166 278 321 288 78 118 66 0 244 358 260 141

8 326 509 511 367 297 356 306 244 0 160 335 281

9 372 636 658 527 426 476 407 358 160 0 327 331

10 118 473 559 546 330 336 247 260 335 327 0 120

11 45 365 441 429 210 219 129 141 281 331 120 0

0 1

2

3

4

56
7

8
9

10

11

totalCost = 2056

Symmetric 
Distance Matrix



• We know that In a Euclidien TSP, if the current solution has two crossing edges, 
it can be improved with a single 2-OPT move. 

• But if the current solution has no crossing edges, does it mean that it can’t be 
improve by a 2-OPT move?

Question

0 1

2

3

4

56
7

8
9

10

11

totalCost = 2056



Answer
0 1

2

3

4

56
7

8
9

10

11

totalCost = 2056

0 1

2

3

4

56
7

8
9

10

11 totalCost = 2023

delta = -355-63+225+160



static abstract class TSPLocalSearch {
    int n;
    int [][] dist;
    int [] tour;
    int [] tourSaved;

    TSPLocalSearch(TSPInstance data) {
        this.n = data.n;
        this.dist = data.distanceMatrix;
        this.tour = new int[data.n+1]; // first and last node are the same
        for (int i = 0; i < n; i++) {
            tour[i] = i;
        }
        tourSaved = Arrays.copyOf(tour,n+1);
    }

    public int[] currentTour() {
        return Arrays.copyOf(tour,n+1);
    }

    public void saveTour() {
        System.arraycopy(tour,0,tourSaved,0,n+1);
    }

    public void restoreSaved() {
        System.arraycopy(tourSaved,0,tour,0,n+1);
    }

    abstract boolean iteration();

    public void optimize() {
        int iter = 0;
        long t0 = System.currentTimeMillis();
        boolean improved = false;
        do {
            improved = iteration();
           iter += 1;
        } while (improved);
    }

}

Implementing 2-Opt: Generic Framework

https://github.com/pschaus/linfo2266

0 1

2

3

4

56
7

8
9

10
11

0,1,2,3,4,5,6,7,8,9,10,11,0



public int deltaTwoOpt(int left, int right) {
    int distLeft = dist[tour[left]][tour[left+1]];
    int distRight = dist[tour[right]][tour[right+1]];
    int distLeftNew = dist[tour[left]][tour[right]];
    int distRightNew = dist[tour[left+1]][tour[right+1]];
    return  distLeftNew + distRightNew - distLeft - distRight;
}

delta2Opt(left,right)

0 1

2

3

4

56
7

8
9

10

11

totalCost = 2056

delta = -355-63+225+160 = -33

deltaTwoOpt(left=0,right=4)

Time Complexity ?



• Our tour representation is (artificially) « oriented » in our 
implementation

twoOpt(left,right)

0 1

2

3

4

5
6

7

8
9

10

11

The red  path must be 
flipped

0,1,2,3,4,5,6,7,8,9,10,11,0

0,4,3,2,1,5,6,7,8,9,10,11,0

twoOpt(0,4)



public void twoOpt(int left, int right) {
   for (int k = 0; k < (right - left + 1) / 2; k++) {
        int tmp = tour[left + 1 + k];
        tour[left + k + 1] = tour[right - k];
        tour[right - k] = tmp;
    }
}

twoOpt(left,right)

0 1 … left left+1 … right right+1

A B … C D

Effect of twoOpt is to swap this sub-array time: 
O(n)



boolean iteration() {
    int bestLeft = 0, bestRight = 0, bestDelta = 0;
    // 2-opt move
    for (int left = 0; left < n; left++) {
        for (int right = left+1; right < n ; right++) {
            int delta = deltaTwoOpt(left,right);
            if (delta < bestDelta) {
                bestDelta = delta;
                bestLeft = left;
                bestRight = right;
            }
        }
    }
    twoOpt(bestLeft,bestRight);
    return bestDelta < 0;
}

TSP2Opt

Time ?



• The neighbourhood is the set of all tours that can be 
obtained by removing 3 edges.

3 Opt

Problem: the neighborhood to explore 
becomes huge O(n^3). While 3-Opt can still 

be useful, 4-Opt almost never pays off.



• What about a K-Opt but the K can choose it-self. 

• Sometime K can be 2, sometimes 5, etc. 

• Would it be tractable?

Let us dream …



• NO: General K-Opt is computationally too intensive 

• But we can limit our-self to a particular form of k-Opt moves: Sequential K-Opt 
moves 

• A K-Opt move is called sequential if it can be described by a path alternating 
between deleted and added edges.

Efficient K-Opt (Lin-Kernighan)

Example: sequential 6-Opt



• Sequential K-Opt moves: What values for k ? 

• The idea is to build greedily a K-Opt move  

• At each step we compute the « gain » of applying it.  
‣ The (k+1)-sequential move is an extension of the k-sequential 

move, etc 

• Then we select (retrospectively) the k that gives the best « gain » 

Lin-Kernighan

gain

k2 3 4 5 6 7



• A sequential k-Opt move has the same effect as k-1 2Opt Moves. 

• Example: sequential 4-Opt = 2Opt + 2Opt + 2Opt

Observation: 



K-Opt starting at 0
0 1

2

3

4

5
6

7

8

9

10

11

k delta total
2 -33 -33

start



K-Opt starting at 0
0 1

2

3

4

5
6

7

8

9

10

11

k delta total
2 -33 -33
3 -77 -110

start



K-Opt starting at 0
0 1

2

3

4

5
6

7

8

9

10

11

k delta total
2 -33 -33
3 -77 -110
4 -9 -119

start



K-Opt starting at 0
0 1

2

3

4

5
6

7

8

9

10

11

k delta total
2 -33 -33
3 -77 -110
4 -9 -119
5 224 105

start

don’t reconnect 
10-11 (cycling)

stop!

restore this 
solution



K-Opt starting at 8
0 1

2

3

4

5
6

7

8

9

10

11

Do a K-Opt iteration starting from 8, do at-least 2, you should see 
something very nice after two iterations (that 2-Opt alone cannot see)



Positive gain stoping criterion for one iter

gain

k2 3 4 5 6 7

stop exploration as soon 
as gain Gi becomes 

negative



static class TSPKOpt extends TSPLocalSearch {

    int K;

    TSPKOpt(TSPInstance data, int K) {
        super(data);
        this.K = K;
    }

    public boolean kOptFrom(int i) {
        …
    }

    @Override
    boolean iteration() {
        var found = false;
        for (int i = 0; i < n; i++) {
           if (kOptFrom(i)) {
                found = true;
            }
        }
        return found;
    }
}

Implementing K-Opt



public boolean kOptFrom(int i) {
    saveTour();
    int cumulatedDelta = 0;
    int bestCumulatedDelta = cumulatedDelta;
    int bestK = 0;
    int k = 0;
    int prev = -1;
    do {
        k += 1;
        int bestDelta = Integer.MAX_VALUE;
        int bestj = -1;
        for (int j = 0; j < n; j++) {
            int dist = Math.abs(j-i);
            if (1 < dist && dist < n-1 && j != prev) { // no stupid 2-opt or direct cycling
                int delta = deltaTwoOpt(i,j);
                if (delta < bestDelta) {
                    bestDelta = delta;
                    bestj = j;
                }
            }
        }
        prev = bestj;
        twoOpt(i,bestj);
        cumulatedDelta += bestDelta;
        if (cumulatedDelta < bestCumulatedDelta) {
            bestCumulatedDelta = cumulatedDelta;
            bestK = k;
            saveTour();
        }
    } while (k < K);
    restoreSaved();
    return bestCumulatedDelta < 0;
}

Implementing K-Opt: 

restore the solution corresponding to the best k 
(possibly the initial one)

positive gain stopping criterion, not sure 
it is a good idea

look for the next 2-opt move

only store the solution if it is the best so-
far (cumulatedDelta)



• The distance matrix is not always symmetric (city: one-way roads, etc). 

• Possible to transform an ATSP into a TSP by doubling the number of nodes. 

Jonker, Roy; Volgenant, Ton. "Transforming asymmetric into symmetric traveling salesman problems". Operations Research Letters, 1983

ATSP reduction to TSP

A B

CD

A
A’ B

B’

C
C’D

D’

wAB
-∞ -∞

-∞-∞

wAB

wBA

wBC

wCD

wDA
wCD

wDA wBC

1 to 1 correspondance

https://en.wikipedia.org/w/index.php?title=Operations_Research_Letters&action=edit&redlink=1


• Idea: N-N’ are so attractive (large negative number) that they are part of any optimal TSP. 
Hence A’B and AB’ cannot be both selected otherwise there would be a sub-tour (not 
hamiltonian circuit).  

Jonker, Roy; Volgenant, Ton. "Transforming asymmetric into symmetric traveling salesman problems". Operations Research Letters, 1983

ATSP reduction to TSP

A B

CD

A
A’ B

B’

C
C’D

D’

wAB
-∞ -∞

-∞-∞

wAB

wBA

wBC

wCD

wDA
wCD

wDA wBC

1 to 1 correspondance

https://en.wikipedia.org/w/index.php?title=Operations_Research_Letters&action=edit&redlink=1


Vehicle Routing

3

2
3

1

4

1

5

2

3

1
3

• Given vehicles starting from a depot each having a fixed capacity C 

• How to visit each customer once without exceeding the capa (we 
charge a quantity at each customer) while minimizing the total distance?

Mix of bin-packing and TSP 
Once customers are assigned to 
vehicles, quite similar to a TSP



• VRP = partitioning (trucs) + sequencing (circuits) 

• We usually use two strategies: 

• Partition first: 
• Build one group of nodes per vehicle (clustering) 
• Solve the TSP on each group 

• Sequence first: 
• Relax the vehicle capacity and solve a giant TSP 
• Split the giant TSP into trip satisfying the capacity constraints.

Two strategies for initialization



Partition vs Sequence first



VRP Initialization: Saving Heuristics [Clarke and Wright 1964]

http://neo.lcc.uma.es/vrp/bibliography-on-vrp/#ClarkeWright64


• Start with as many vehicles as the number of customers 

• Insert customers and merge routes such that the capa is not violated and 
the distance is decreased the most

VRP Initialization: Saving Heuristics [Clarke and Wright 1964]

http://neo.lcc.uma.es/vrp/bibliography-on-vrp/#ClarkeWright64


•  A ray centered at the depot performs a full rotation, 
collecting customers into clusters not violating the capacity

VRP Initialization: Sweep Heuristic



Split Heuristic

How to discover this 
split optimally ?

Initial TSP Giant Tour that 
violates the capacity 10 for 

one truck



Answer: Dynamic Programming 

Prins, C., Labadi, N., & Reghioui, M. (2009). Tour splitting algorithms for vehicle routing problems. International Journal of Production Research, 47(2), 507-535.



Shortest Path: Bellman Algo



Implementation



• The giant tour T can be built using any TSP algorithm. 

• Optimal TSP tours do not necessarily lead to optimal CVRP solutions after 
splitting, good tours are enough. 

• However, Split is optimal, subject to the ordering of T

• O(n^2) time complexity overall (capacity check in O(1))

Remark



Initialiaztion with randomised TSP Giant tour



• Given a set of non 
preemptive activities 
(cannot be interrupted) 

• A resource with capa C 

• How to schedule them to 
minimize the total duration 
(makespan) without 
exceeding the capacity of 
the resource? 

Scheduling Moves

duration

consumption

C
cumulated profile

makespan



• Iterate between two steps: 

1. flatten = add strong precedences constraints until the capacity constraint is 
satisfied (assuming each activity starts as soon as possible while satisfying 
the precedence constraints) 

2. relax = remove some precedences randomly on the critical path

Scheduling with capa: IFlat-IRelax algorithm



Example

2
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1 2 3 4 5 6

dur 10 16 14 13 21 5

cons 7 7 4 10 4 9

1

2

C=20

3

4
5

6
critical path = the path that 
causes the makespan value

t0

current precedence graph

each activity scheduled 
at its earliest start while 

satisfying the 
precedences (dynamic 

programming)

makespan

to have a chance to decrease the 
makespan we have to relax precedences on 

the critical path (say we remove 6->2)



Example

2

6
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1 2 3 4 5 6
dur 10 16 14 13 21 5
con

s
7 7 4 10 4 9

1

2

C=20

3

4
5

6
critical path = the path that 
causes the makespan value

t0

current precedence graph

we now exceed the capa at some 
point. We must flatten by adding 
precedences between activities 

where we exceed

makespan



• 16x16 edge matching puzzle 

• 2$ millions  if you solve it …

Eternity II



Objective: maximize # correct connections (480)
What do you suggest as neighborhood?



Swap and rotate pieces pairwise ?
What do you suggest as neighborhood?

time (s)
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You will not go much 
higher than 320



Let’s try to move >2 pieces at once

Try to improve 
optimize a full 
(small) region?

Too computational intensive  
(same intrinsic difficulty as 

original problem)



• Remove m pieces from non edge adjacent positions (up to n2/2 =  chessboard).. 

• Replace them optimally. 

• This neighborhood can be solved optimally and efficiently

Generalization of Swap and Rotate



• Let’s remove 5 non adjacent pieces
Eternity VLNS



• Let’s remove 5 non adjacent pieces
Eternity VLNS



• Compute score to place them each optimally in holes
Eternity VLNS



• Compute score to place them each optimally in holes
Eternity VLNS



• At the end, a complete weighted bipartite graph between removed pieces and 
holes. 

• solve a maximum assignment problem (Hungarian algorithm in O(m3)).  

• The arcs in the assignment and the label of the arcs tell us how to replace 
optimally the pieces in the holes.  

• Neighborhood of size: m!4m (exponential) but it is optimally explored in 
polynomial time.

Eternity VLNS



• Each step, m non-adjacent positions are randomly chosen and the move is 
applied. During 30 seconds. Random initial positions of the pieces on the 
board. 

Effect of neighborhood size
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• Be able to explain the principle of local search  

• Be able to implement a simple search with swap-moves and a tabu-search meta-
heuristic 

• Be able to suggest a neighborhood for a new problem and discuss/prove it it is 
connected or not. 

• Be able to explain and apply moves for: 
‣ TSP (Lin-Kernighan) and vehicle routing,  
‣ scheduling,  
‣ eternity

Exam Questions



• Implementing the Lin-Kernighan heuristic for the TSP, Markus Reuther 

• General k-opt submoves for the Lin–Kernighan TSP heuristic, Keld Helsgaun 

• Optimization approaches for the vip’s with black box feasibility. Florence Massen. PhD 
thesis 2013. 

• In pursuit of the traveling salesman, William J. Cook, 2012. 

• Constrained Based Local Search. P. Van Hentenryck and L. Michel. 2006. 

• Hybrization of CP and VLNS for eternity II. P Schaus and Yves Deville. 

• Iterative Relaxations for Iterative Flattening in Cumulative Scheduling. P. Van Hentenryck 
and L. Michel. 2006. 

• Prins, C., Labadi, N., & Reghioui, M. (2009). Tour splitting algorithms for vehicle routing 
problems. International Journal of Production Research, 47(2), 507-535.

Bibliography



Inventors

1942

Brian Wilson Kernighan

also coauthor of the AWK 
and AMPL programming 

languages

Fred Glover

1937

Tabu Search meta-
heuristic

http://en.wikipedia.org/wiki/AWK
http://en.wikipedia.org/wiki/AMPL
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language



