
Network Flows*

Pierre Schaus

*Many slides and figures of this presentation are coming from Claude Guy
Quimper and are used with his agreement for INGI2266

• Maximum Flows
‣ Augmenting paths
‣ Ford-Fulkerson algo
‣ Scaling algo
‣ Max-Flow Min Cut

• Min Cost Flow
‣ Iterative Shortest Paths

• Flows and Linear Programming

Outline

• Max Flow is a combinatorial problem on Graphs.

• Many problems can be solved with Max Flows on a graph: transports, distributions,
network designs

• Max Flow is a very useful building block occurring in many context of optimization
(generation of cut for MIP, filtering algorithm for global constraints, computation of lower
bounds, etc).

Introduction

Reminder: Directed Graph

Exemple de graphe orienté

• A directed graph is tuple (V, E) where V is the set of vertices (also
called nodes) and E ⊆ V x V is the set of edges (also called arcs).

• A pair (a, b) ∈ E represents a directed edge from node a to b.

Example of directed graph

4 1

3 2

V = {1, 2, 3, 4}
E = {(1, 3), (3, 1), (3, 2), (4, 1), (4, 3)}

Weighted directed graph

• A node a is adjacent to node b if there exists an edge (a, b) ∈ E.

• Some graphs have weighted edges given by a function f(a, b) taking two
nodes as input and returning a number (integer or real depending on the
application).

• A weight can represent the distance, the cost, the capacity, etc.

Exemple de fonction de poids

4 1

3 2

a b f(a,b)

1 3 6

3 1 6

3 2 8

4 1 9

4 3 7

9

7 6

8

Path and cycles

• A path is a suite of distinct nodes n0, n1, ... nk-1 with (ni, ni+1) an edge
for all 0 ⩽ i < k-1. Node n0 is the origin and node nk-1 is the
destination.

• Un cycle is suite of distinct nodes n0, n1, ..., nk-1 with (ni, ni+1 mod k) an
edge for all 0 ⩽ i < k.

• Sometimes, paths and cycles are identified with the sequence of
edges instead of the sequence of nodes.

ADT for graphs: Adjacency Matrix

• There are several possible data structures to encode a graph.

• The simplest one is the adjacency matrix M où M[a,b] = 1 if (a,b) is an edge M[a,b] = 0 if
(a, b) is not an edge.

• Drawback: Does not take advantage of sparsity, linear time to iterate over adjacent
nodes.

• We can use adjacency lists

• For each node, an array Adj[1..n] with one entry per node.

• An entry A[i] is a pointer to the beginning of a linked list with adjacent (out) nodes to node i.

• This list in practice can be double linked for more efficient update operations on the graph.

ADT for graphs: Adjacency Lists

4 1

3 2

1

2 /

3

4

3 /

1

1

2 /

3 /

Depth-first search (DFS) is an algorithm for traversing a graph data structures:
• One starts at the root (selecting some arbitrary node as the root in the case of a

graph) and explores as far as possible along each branch before backtracking.

DFS on graph

Color Meaning
White The node is not yet visited

Grey The node has been visited but all its adjacent edges are
not yet visited.

Black The node is visited and all its adjacent edges have been
processed.

DFS Example

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

Parent state at the end
of DFS (were you came
from when you have
visited the node):

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

• The Parent vector encodes a forest, i.e. a collection of trees.

• Each node of the graph is part of the forest.

• An edge (v, u) is part of the foret if the node v was visited during the processing of edge
(u,v).

• Then u is called the parent of v.

• The forest is encoded using an Array representation Parent where Parent[v] = u.

DFS Parent Code

Algorithm 1: DFS(V , E)

// Initialization;
Create global variable Color[1..|V |];
Create global variable Parent[1..|V |];
for each node u 2 V do

Color[u] white;
Parent[u] Nul;

// Start the search;
for each node u 2 V do

if Color[u] = white then
Visit(u, V,E);

Algorithm 2: Visit(u, V,E)

Color[u] Grey;
for v 2 Adj[u] do

// Explore arc (u, v);
if Color[v] = white then

Parent[v] u;
Visit(v, V, E);

Color[u] black;

• Algorithm DFS initializes the
vector of colors and parents
then starts the visit for each
node

• Algorithm Visit visits a node of
the graph and every edge
adjacent to this node. If node u
is adjacent to a node v not yet
visited, then this node is also
visited.

• Initialization in O(|V|)

• Exactly |V| calls to procedure Visit.

• Each call to procedure Visit treats each adjacent edge to node u only once. Since Visit is
called only once per node, each edge is treated only once.

• The time complexity is thus O(|V| + |E|).

DFS Time Comlexity

• Problem: Find a path from origin s to destination t.

• Solution: Adapt DFS to this end

• Instead of calling Visit on every node, just call it on origin node s.

• Nodes t, Parent[t], Parent[Parent[t]], ..., s is the reverse path from origin s to destination t.

• If Parent[t] is nul, then there is no path from s to t.

Find a Path in Directed Graph

Example: Find a path from 4 to 3

4 1

3 2

4 1

3 2

4 1

3 2

State of vector Parent
at the end of the
(modified) DFS

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

4 1

3 2

• This algo finds a path from origin s to all other nodes reachable from s (and not only
toward destination t).

• And the representation of all these paths is O(|V|) (the vector Parent)

Observation

• Consider following graph and imagine that the edges are pipes and nodes are junctions
between pipes. Each pipe has a capacity expressed in number of litres/minute.

• Question: How much litres/minutes can flow at most between node 1 and node 6 ?

Max Flow

1

2

3

4

5

6

3

7

2

4
5

2

3

Source Sink

• Answer: 7 litres / minutes

• Solution shown on graph: for each edge (flow/capacity)

• Note that nothing is created or lost at intermediate nodes: Input flow = Output Flow (like
Kirchhoff law in electronic circuits)

Max Flow

1

2

3

4

5

6

3/3

4/7

2/2

4/4
5/5

1/2

2/3
flow conservation

Source Sink

• Max Flow problem can be solved in polynomial time.

• We will show an algorithm to solve this problem.

• Max Flow can be used to model many different complex problems (so not only water
flows in pipes, think about computer networks).

• Max Flow can be used as a subroutine in NP Hard problems.

Max Flow: Motivation

• We assume edges are unidirectional: (a,b)∈E => (b,a)∉E

• Node s provides water and is called the the source.

• Node t absorbs water and is called the sink.

• The capacity between two nodes a and b is denoted as c(a,b). This value is positive if
(a, b) is an edge of the graph, 0 if (a, b) is not an edge.

• A flow is a vector f such that each composant is associated to a pair of nodes. We
denote by f(a,b) the flow quantity between nodes a and b. We have following relation:

• An instance of the Max Flow problem is characterized by the graph G = (V, E), the
source s, the sink t and the vector of capacity c.

Problem Definition

f(a, b) = �f(b, a)

• The flow conservation constraint requires that the quantity of water entering into a node
(different from source and sink) is exactly the same as the quantity of of water exiting this node.

• Or equivalently we have.

• The capacity constraint requires that the flow through each edge does not exceed the
capacity of this edge

Problem Definition

�

b|(b,a)�E

f(b, a) =
�

b|(a,b)�E

f(a, b) ⇥a � V \ {s, t}

f(a, b) c(a, b) 8(a, b) 2 E

f(a, b) 0 8(a, b) 62 E

X

b2V

f(a, b) = 0 8a 2 V \ {s, t}

• A valid flow is a flow that satisfies the conservation constraint and the capacity constraint.

• A null flow is a valid flow where f(a,b) = 0 for each edge.

• The value of a valid flow is the water quantity out of the source. Because of the conservation
flow constraint, this value is also equal to the quantity entering the sink.

• The Max Flow problem is to to discover a valid flow of maximal value.

Problem Definition

v(f) =
X

a2V |(s,a)2E

f(s, a) =
X

a2V |(a,t)2E

f(a, t)

v(f) =
X

a2V |(s,a)2E

f(s, a) =
X

a2V |(a,t)2E

f(a, t)

• We usually only represent edges with positive capacity and non negative flows. Hence
these two representations are equivalent.

Graphical Representation

1

2

3

4

5

6

3/3

4/7

2/2

4/4
5/5

1/2

2/3

1

2

3

4

5

6

-3/0 -2/0
2/3
-2/0

4/7
-4/0

1/2
-1/0

2/2

3/3

4/4

-4/0

-5/0
5/5

For now, we assume only
one directional edge in the

input graph
Implicitly add the reverse

edges with capacity 0

• As long as I can find a path P with residual capacity in G, augment as much as
possible the flow on P

Let us try a simple algorithm

• By how much can I increase at most the flow along this path?

Intuition

1

2 4

3 5

6

0/2
0/3

0/2
0/5

0/4
0/7

0/3
2/2

2/5

2/3

• By how much can I increase at most the flow along this path?

0/7

Intuition

1

2 4

3 5

6

0/2
0/3

0/4

2/2
2/5

2/3

3/7
3/4

5/5

• By how much can I increase at most the flow along this path?
Intuition

1

2 4

3 5

6

0/2
0/3

2/2
2/3

3/7
3/4

5/5

1/2
1/33/3

• There is no path any more on G with residual capacity.

• My flow value is 6. Is this optimal?

Intuition

1

2 4

3 5

6

0/2
0/3

2/2
2/3

3/7
3/4

5/5

1/2
1/33/3

• The blue path is interesting!
Intuition

1

2 4

3 5

6
2/2

3/7
3/4

5/5

1/2
1/33/3

AugmentingC
apacity 4

Augmenting
Capacity 1

Cancelling
Capacity 2

Augmenting
Capacity 1

Augmenting
Capacity 2

Taking into consideration the
« cancelling capacity »
What a nice idea!

• Residual graph Gf = (V, Ef) is used to discover paths from the source to the sink on which
it is possible to « push » an additional quantity of water and so increase the value of the
flow.

• This graph is composed of exactly the same nodes as the original graph G = (V, E) but the
edges may have a different direction and a different (residual) capacity.

Residual Graph

• We have an edge (a, b) in the residual graph if and only if the edge (a, b) is not saturated:

• The residual capacity is given by the quantity of flow that can be added without violating
the capacity of the edge.

Residual Graph

(a, b) 2 Ef () f(a, b) < c(a, b)

cf (a, b) = c(a, b)� f(a, b)

Example Residual Graph

Residual Graph Gf

1

2

3

4

5

6

-3/0 -2/0
2/3
-2/0

4/7
-4/0

1/2
-1/0

2/2

3/3

4/4

-4/0

-5/0
5/5

Graph G with flow f

1

2

3

4

5

6

1
2

5

4

3

4

1
1

2

3

• A path joining the source s to the sink t in the residual graph Gf is called augmenting
path.

• It is a path on which it is possible to « push » at least one more unit of flow along the
edges, i.e. increase by one unit the flow on each edge without increasing the capacity of the
edges.

• Theorem: Consider an augmenting path and let q be the smallest residual capacity cf(a,b)
associated to an edge on this path. The following flow f ’ is a valid flow with value v(f) + q.

Augmenting Path

f �(a, b) =

�
�

�

f(a, b) + q si (a, b) est sur le chemin augmentant
f(a, b)� q si (b, a) est sur le chemin augmentant
f(a, b) sinon

if (a,b) is on the augmenting path
if (b,a) is on the augmenting path
otherwise

• Requires the capacities to be integers

• Is an iterative algorithm

• At each iteration, the algo takes a valid flow and transform it into another valid
flow. This new flow has a strictly larger value, or the algo proves that there is no
flow with a larger value.

• The flow increase is done along a path called « augmenting path ».

• The augmenting path are discovered in transformed graph called « residual
graph ».

Ford-Fulkerson Algoritm

Ford-Fulkerson

Algorithm 1: Ford-Fulkerson(V, E, c, s, t)

Build a vector f with
�|V |

2

�
entries initialized at 0.;

repeat
Build the residual graph Gf ;
Find a path C from s to t in Gf ;
if such a path exists then

Let q be the smallest residual capacity on an edge of path C;
for every edges (a, b) of path C do

f(a, b) f(a, b) + q;
f(b, a) f(b, a)� q;

until we cannot find a path between s and t in Gf ;
return f ;

Execution Ford-Fulkerson 1/3

1

2

3

4

5

6

3

7

2

4
5

2

3

1

2

3

4

5

6

2

2

1

3

2

3

7

2

4

1

2

3

4

5

6

-2/0 0/0
0/3
0/0

0/7
0/0

2/2
-2/0

0/2

2/3

0/4

0/0

-2/0
2/5

1

2

3

4

5

6

0/0 0/0
0/3
0/0

0/7
0/0

0/2
0/0

0/2

0/3

0/4

0/0

0/0
0/5

Execution Ford-Fulkerson 2/3

1

2

3

4

5

6

2
1

2

3

2
4

3 1

3

5

1

2

3

4

5

6

2 1
2
1

3
4

1
1

1

1

4
5

1

2

3

4

5

6

-2/0 0/0
0/3
0/0

3/7
-3/0

2/2
-2/0

0/2

2/3

3/4

-3/0

-5/0
5/5

1

2

3

4

5

6

-2/0 -1/0
1/3
-1/0

4/7
-4/0

1/2
-1/0

1/2

2/3

4/4

-4/0

-5/0
5/5

Execution Ford-Fulkerson 3/3

1

2

3

4

5

6

1
2

3
4

1
1

4
5

3
2

1

2

3

4

5

6

-3/0 -2/0
2/3
-2/0

4/7
-4/0

1/2
-1/0

2/2

3/3

4/4

-4/0

-5/0
5/5

• At each iteration, the algorithms of Ford-Fulkerson searches for a path in the residual
graph, it takes O(|E| + |V|) (DFS). Since the graph is connected we have |V| - 1 ≤ |E|.
Looking for a path is thus in O(|E|).

• We then need to update the residual graph by processing each edge of the augmenting
path O(|V|).

• In the worst case, we need as many iterations as the value of the final maximal flow i.e. v(f).

• The total complexity is thus O(v(f)|E|).

Ford-Fulkerson Time Complexity

• We drop the hypothesis that edges are uni-directional.

• The input graph is now assumed to have bi-directional edges (set capacity to 0 if the edge does not exist
in one direction).

• The flow is defined in both directions of an edge keeping the relation:

• A negative flow on edge (a, b) means that the water flows in the reverse direction i.e. from b to a.

• The flow conservation constraint is written:

Dealing with Bidirectional Edges

f(a, b) + f(b, a) = 0

�

v�V

f(u, v) =
�

v�V

f(v, u) = 0

• The residual graph Gf = (V, Ef) with bidirectional edges is defined as follows.

• Edge (a, b) belongs to Ef if and only if it is not saturated:

• The residual capacity of edge (a, b) is the additional flow quantity that can be pushed on this edge:

• Let C be an augmenting path in Gf and q be the smallest residual capacity on this path, the new
augmented flow f’ is defined as follow:

Residual Graph with Bi-directional Edges

f �(a, b) =

�
�

�

f(a, b) + q si (a, b) � C
f(a, b)� q si (b, a) � C
f(a, b) sinon

(a, b) � Ef �� f(a, b) < c(a, b)

cf (a, b) = c(a, b)� f(a, b)

if (a,b) in C
if (b,a) in C
otherwise

Example Bidirectional Flows 1/3

1

2

3

4

5

6

0/0 0/0
0/5
0/2

0/7
0/0

0/1
0/1

0/4

0/3

0/4

0/0

0/0
0/3 1

2

3

4

5

6

5
2

7

1
1

4

3

4
3

1

2

3

4

5

6

-1/0 0/0
0/5
0/2

0/7
0/0

1/1
-1/1

0/4

1/3

0/4

0/0

-1/0
1/3 1

2

3

4

5

6

1
5
2

7

2

4

2

4
1

2

Example Bidirectional Flows 2/3

1

2

3

4

5

6

-1/0 -2/0
2/5
-2/2

2/7
-2/0

-1/1
1/1

2/4

1/3

2/4

-2/0

-1/0
1/3 1

2

3

4

5

6

1 2
3
4

5
2

2

2

2

2

2

1
2

1

2

3

4

5

6

-1/0 -2/0
2/5
-2/2

4/7
-4/0

-1/1
1/1

2/4

1/3

4/4

-4/0

-3/0
3/3 1

2

3

4

5

6

1 2
3
4

3
4

2

2

2

4

3

Example Bidirectional Flows 3/3

1

2

3

4

5

6

-3/0 -4/0
4/5
-4/2

4/7
-4/0

-1/1
1/1

4/4

3/3

4/4

-4/0

-3/0
3/3 1

2

3

4

5

6

3

4

1
6

3
4

2

4

3

• If all of the edge capacities in a graph are an integer multiple of 7, then the value
of the maximum flow will be a multiple of 7 (Yes or No?)

Still Alive?

• the maximum (s,t)-flow of some graph has value f. Now we increase the capacity
of every edge by 1. Then the maximum (s,t)-flow in this modified graph will have
value at most f + 1. (Yes/No?)

Still Alive?

Evaluating Robustness of a Network

Montréal Québec

Trois-Rivières

Drummondville

Sherbrooke
Saint-George

Saguenay

Gatineau

Rouyn-Noranda

Rimouski

Gaspé
Tadoussac

Sept-Îles

A telecom network linked cities of Québec with Optical Fiber.
What is the minimum number of fibres you need to cut to disconnect Montréal from Québec?

Evaluating Robustness of a Network (Cont)

RN

GT

M

SH

D

TR

SA

Q

SG

R

T
GP

SI

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

Build a graph with one unit capacity on each edge. The maximum flow
between Montréal (M) and Québec (Q) is the minimum number of
fibers to be cut if you want to disconnect the two cities. Why?

• A cut is a bipartition of a set V formed of two disjoint sets S and T such that V is
the union of S and T.

• A cut in a network is a bipartition (S, T) of the nodes such that the source is in the
set S and the sink is in the set T.

• The capacity of a cut (S, T) is the capacity of the edges linking a node from S to
a node in T.

Cut

c(S, T) =
X

a2S

X

b2T

c(a, b)

S � T = V S � T = �

S � T = V S � T = �
s � S t � T

Cut example

• The capacity of this cut is 8.

• We write c({1, 2, 3}, {4, 5, 6}) = 8.

1

2

3

4

5

6

2

7

4

4
2

2

3

S = {1, 2, 3} T = {4, 5, 6}

Wooclap

• What is c({1,4,}, {2, 3, 5, 6}) ?

1

2

3

4

5

6

2

7

4

4
2

2

3

S = {1, 4} T = {2, 3, 5, 6}

Net flow of a cut

• The net flow of a cut (S, T) is the quantity of flow (positive or
negative) from a node in S to a node in T.

1

2

3

4

5

6

2/2

3/7

3/4

3/4
2/2

1/2

3/3 f({1,2, 3}, {4, 5, 6})
= f(2, 4) + f(2, 5) + f(3, 5)
= 3� 1 + 3
= 5

f(S, T) =
�

a�S,b�T

f(a, b)

Net flow of a cut

• Theorem: For every cut (S, T) and valid flow f, the value v(f) of the
flow is equal to the net flow of the cut f(S, T).

• Proof:

v(f) =
�

v�V

f(s, v)

=
�

v�V

f(s, v) +
�

u�S\{s}

�

v�V

f(u, v) Par conservation du flot dans u

=
�

v�V

�

�f(s, v) +
�

u�S\{s}

f(u, v)

�

�

=
�

v�V

�

u�S

f(u, v)

(flow conservation in u)

V = S ∪ T

Proof cont.

v(f) =
X

v2T

X

u2S

f(u, v) +
X

v2S

X

u2S

f(u, v)

=
X

v2T

X

u2S

f(u, v) +
X

v2S,u2S,v<u

(f(u, v) + f(v, u))

=
X

v2T

X

u2S

f(u, v)

= f(S, T)

And this is zero!

Max Flow, Min Cut Theorem (very famous)

• Given a feasible flow f, these properties are equivalent

1. f is maximum flow in G;

2. The residual graph Gf has no augmenting path

3. There exists a cut (S, T) with capacity c(S, T) equal to v(f).

We proof 1=>2, 2 => 3 and 3 => 1

Proof Cont
• (1 => 2) If this path would exists, we could build a larger flow

(contradicts the fact that it is maximal).

• (2 => 3) Let S the set of nodes that can be reached from the
source s in the residual graph Gf and let T = V \ S. Partition (S, T) is
a cut since s is in S and t in T.

1

2

3 5

4

6

3/3

-3/0

4/4
-4/0

4/5
-4/2

3/3

-3/0

s t-1/11/1

-4/0

4/4

4/7

-4/0

1

2

3 5

4

6
3

4
1

6

3

-1/11/1
3

4

TGf

S

Proof Cont

• Let two nodes u ∈ S and v ∈ T.

• If (u, v) ∈ E then f(u, v) = c(u, v) otherwise s could reach v in Gf.

• If (v, u) ∈ E then f(u, v) = 0 otherwise s could reach v in Gf.

• Otherwise, f(u, v) = 0 since no flow can flow between two
nodes not linked by an edge.

1

2

3 5

4

6

3/3

-3/0

4/4
-4/0

4/5
-4/2

3/3

-3/0

s t-1/11/1

-4/0

4/4
4/7

-4/0

1

2

3 5

4

6
3

4
1

6

3

2
3

4

T
Gf

S

0/1
0/0

2 => 3 (Cont)
v(f) = f(S, T)

=
X

a2S

X

b2T

f(a, b)

=
X

(a,b)2E|a2S,b2T

f(a, b) +
X

(b,a)2E|a2S,b2T

f(a, b)

=
X

(a,b)2E|a2S,b2T

c(a, b) + 0

= c(S, T)

For every cut (S, T) and valid flow f,
the value v(f) of the flow is equal to
the net flow of the cut f(S, T).

1

2

3 5

4

6

3/3

-3/0

4/4
-4/0

4/5
-4/2

3/3

-3/0

s -1/11/1

-4/0

4/4
4/7

-4/0

T

S

0/1
0/0

Proof Cont

v(f) = f(S, T)

=
X

a2S,b2T

f(a, b)

X

a2S,b2T

c(a, b) Par la contrainte de capacité

= c(S, T)

• (3 => 1) The value of a flow cannot exceed the capacity of one of its
cut.

• Proof:

• A flow with a value equal to the capacity of one of its cut is thus maximum.

because of the capacity constraint

For every cut (S, T) and valid flow f,
the value v(f) of the flow is equal to
the net flow of the cut f(S, T).

Exercise Scheduling Problem

• 4 persons must give a seminar in a
single room

• 4 slots have been suggested

• 9h00, 10h00, 11h00 and 13h00.

• Each speaker was asked to give
possible slots.

• Problem: Create a schedule

Person Available

Alice 11h00
13h00

Benoît
9h00
10h00
13h00

Clotilde
9h00
11h00
13h00

Dany
11h00
13h00

Can you model this as a max flow problem?

Solution

10

11

13

9A

B

C

D

s t

1

1

1

1

1

1 1

1

1

1

1

1

1

1

10

11

13

9A

B

C

D

s t

The Lucky Puck Company has a set of m factories {s1,s2,…sm}
and a set of n warehouses {t1,t2,…,tn}.

The Lucky Puck manufactures hockey pucks in the factories
stocks them in the warehouses. Lucky Puck leases space on
trucks from another firm to ship the pucks from the factory to
the warehouse. Because the trucks travel over specified routes
(edges) between cities (vertices) and have a limited capacity,
Lucky Puck can ship at most c(u,v) crates per day between
each pair of cities u and v.

Lucky Puck has no control over these routes and capacities, and so
the company cannot alter the flow network

They need to determine the largest number p of crates per day that
they can ship and then to produce this amount, since there is no
point in producing more pucks than they can ship to their
warehouses. Lucky Puck is not concerned with how long it takes
for a given puck to get from a factory to the warehouses; they care
only that p crates per day leave the factories and p crates per day
arrive at the warehouses.

Can you model this as a max flow problem (one source, one sink)?

Solution

we can always reduce the problem of determining a maximum flow in a network with
multiple sources and multiple sinks to an ordinary maximum-flow problem.

• We have seen that the total complexity is O(v(f)|E|).

• It is strange to have the time complexity expressed in terms of the final result.

• Let’s try to reformulate the complexity in terms of the input.

• Let U be the maximum capacity of the graph.

• c(S={s}, T=V-{s}) is in O(|V|.U) (by the max-flow min cut theorem)

• Ford-Fulkerson complexity can thus be expressed as

Ford-Fulkerson Time Complexity Revisited

O(|V ||E|U)

Is this polynomial in the
size of the input?

No because the input takes
log(U) bits to represent U

• Start with initial

• There are at most O(log U) scaling phases.

• Question: How many augmenting paths can we discover at
most in a ∆-scaling phase?

Idea: augment the flow along a path with sufficiently large residual capacity (≥ ∆)

1.Let Gf,∆ be Gf with edges with residual capa < ∆ filtered out. Then find augmenting
paths in Gf,∆ until not possible with current value of ∆. Call this phase a ∆-scaling
phase.

2. If ∆ > 1, divide ∆ by 2 and go to step 1.

Ford-Fulkerson with Scaling

� = 2blogUc

• Consider the flow f at the end of the ∆-scaling phase and let v(f) denote its flow
value.

• Let S be the set of nodes reachable from s in Gf,∆

• Then (S,V-S) is an s-t cut. By definition of S, residual capacity of the cut is c(S,V-
S) ≤ |E|∆.

• If f* is the optimal flow, then v(f*)-v(f) ≤ |E|∆.

• In the next ∆-scaling phase, each augmentation carries at least ∆/2 units.

• So the next ∆-scaling phase can perform at most 2|E| augmentations: number of
augmentations ≤ |E|∆/(∆/2)= 2|E|

Number of steps in a ∆-scaling phase

• O(log(U)) ∆-scaling phases

• At most O(|E|) augmenting paths in each ∆-scaling phase

• Discovery of one augmenting path in O(|E|)

• Total complexity is thus

Ford-Fulkerson with scaling: Complexity

O(|E|2 logU)

Is this polynomial in the
size of the input? Yes it is!

Min Cost Flow (quick intro)

1

2

3

4

5

6

3

7

2

4
5

2

3
Input: B = 10

You must flow 10
litres/second

• Decide how to flow this quantity B to from the source
to the sink at minimal cost without exceeding
capacities

Successive Shortest Path Algorithm
• Start with a flow of zero

• Find an s-t path in Gf with minimum weight (shortest path problem)

• Augment along this path as much as possible (limited by smallest
residual capacity of the path).

• Repeat two previous steps until initial demand B of the source is met.

• Moore-Bellman-Ford must be used (negative weights
possible) O(|V||E|)

• Total complexity is thus O(B|V||E|)

• Remark: A similar tric for as for the capacity scaling is
possible to make it strongly polynomial.

• Flows can be formulated as Integer Linear Programming problems.

• They have the particularity that if the capacities are integers, the optimal solution
of the linear relaxation will be integer (totally unimodular matrix theory).

• The simplex algorithm that we have see can thus also be used to solve network
flow problems (dedicated version exist only for flows: network simplex).

• Min Cut problem is the dual of the Max Flow problem (strong duality, same
optimum objective)

Flows, cut and Linear Programming

• « Introduction to algorithms » Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest et
Clifford Stein. Third edition. Chapter26

• « Network Flows » Ahuja, Maganti and Orlin Chapter 7 & 9.

• « Combinatorial Optimization Theory and Algorithms », Korte, Bernhard, Vygen, Jens. 5th
Edition. Chapter 9.

Bibliography

Remark: We have seen the Ford-Fulkerson method for solving maximum flow problems. It is
the most famous method but many other algorithms exists (push relabel, blocking flow, etc).
Two know more about state of the art, have a look at http://cacm.acm.org/magazines/
2014/8/177011-efficient-maximum-flow-algorithms/fulltext

http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/fulltext

• How to find a maximum flow with minimum demand and
capacity in some edges?

Exerice

1

2

3

4

5

6

3

7

2

4
5

2

3

at least 2 units in
this edge

at least 3 units in
this edge

Hint: Try first to find a feasible flow, then maximize it

History

https://www.youtube.com/watch?v=D36MJCXT4Qk

1924 – 1976

L. R. FordD. R. Fulkerson

1927

Nice video on network
flows

1935

Richard Manning Karp

Turing Award

1934

Jack Edmonds

https://www.youtube.com/watch?v=D36MJCXT4Qk

