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A linear programme is

x1 + x2

4x1 � x2  8

2x1 + x2  10

5x1 � 2x2 � �2

x1, x2 � 0

maximize
subject to

1) The maximization of a linear function

2) Over linear constraints
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x � 0

maximize
subject to

Matrix Notation



The Brewer Problem
• A small brewery produces ale and beer and wants to maximize profit 

• Production limited by scarce resources (corn, hops, malt) 

• The recipe for ale and beer require different proportions of resources



Brewer Problem: Linear Programming Formulation
• Variables: A = the number of barrels of ale, B = the number of barrels of beer.



Brewer Problem: Feasible Region



Brewer Problem: Objective Function



3D example, feasible region

x1 + x2 + x3  4

x1  2

x3  3

3x2 + x3  6

x1, x2, x3 � 0

x1
x2

x3

(0,2,0)

(2,0,2)

(0,1,3)

(0,0,3)

(1,0,3)

(2,2,0)Exercise: What would be optimum for 
• maximize x1+x2+x3 ? 
• maximize x1+x2 ?



• The solution space of a linear system of linear equalities is a convex polytope. 

• S is a set of points. S is convex iff for any point x and y in S, any convex 
combination is in S

Convex Polytope

Theorem: Every point in a polytope is a convex 
combination of its vertices

(↵x+ (1� ↵)y) 2 S with ↵ 2 [0, 1]



Optimality is at vertices

Theorem: At least one of the points where the 
objective value is maximal is a vertex.

maximize



Optimality is at vertices (proof)
Theorem: At least one of the points where the 
objective value is maximal is a vertex.

maximum

maximum

>

<
<
<

scalar product (c is a vector)

contradiction

each vertex is less good than x*



• Enumerate all the vertices 

• Select the one with the largest objective value 

• What do you think about this ? 🧐

A first Algorithm



Number of of vertices 
• In 1D, the unit interval [0, 1] has 2 endpoints. Intersection of 2 half-spaces. 

• In 2D, the unit square has 4 vertices. Intersection of 4 half-spaces  

• In 3D, the unit cube has 8 vertices, defined by the intersections of the 6 half-spaces 
... 

• In nD, the unit hypercube has 2^n vertices defined by the intersection of 2n half 
spaces. 

The pattern is clear: The number of vertices can grow exponentially with the number of 
inequalities. 

Conclusion: enumerating all the vertices is impractical 💣.  

Solution: Simple Algorithm 🥳



Simplex Algorithm

• Move from one vertex, to a neighboring vertex with an improving 
objective function. 

• Move until no more improving neighbor vertex 

• An optimal vertex is always reached because of convexity of polytope



The different forms of Linear Programme

• This is a bit messy, let’s make a unique form, called canonical form

2x1 � 3x2

x1 + x2 = 7

x1 � 2x2  4

x1 � 0

maximize
subject to equality constraint

inequality constraint

Non negativity of some 
variables but not all



Canonical Form (all constraints are <= and all vars non negative)
nX

j=1

cjxj

nX

j=1

aijxj bi for i= 1, 2, . . . ,m

xj � 0 for i = 1, 2, . . . , n

💡Always possible to convert a linear program into canonical form

maximize

subject to

non negativity constraints for all variables

n variables, m constraints



• If variable xj has no non-negativity constraint replace each occurrence by 

• Convert equality constraints (=) into two  ( ) 

• Exercise: Convert this into standard form

≥ , ≤

Converting into canonical form is an easy process

x0
j � x00

j

2x1 � 3x2

x1 + x2 = 7

x1 � 2x2  4

x1 � 0

maximize
subject to



Not yet the panacea
• For the solving, it is easier to deal with equality constraint. 

• After all, we know how to solve system of linear equations (Gauss-Jordan) 

• Let’s create another form, called the standard form with  
‣ equality constraints only, and  
‣ non negativity constraints on all the variables 



Standard form (only non-negative constraints are inequalities)
nX

j=1

cjxj

nX

j=1

aijxj bi for i= 1, 2, . . . ,m

xj � 0 for i = 1, 2, . . . , n

maximize

subject to

xn+i = bi �
Pn

j=1 aijxj

xn+i � 0

Introduce one slack variable/inequality 
If slack = 0, we say the constraint is tight

n+m variables, m constraints



From Canonical Form to Standard Form

2x1 � 3x2 + 3x3

x1 + x2 � x3  7

�x1 � x2 + x3  �7

x1 � 2x2 + 2x3  4

x1, x2, x3 � 0

maximize
subject to

2x1 � 3x2 + 3x3

x4 = 7 � x1 � x2 + x3

x5 = �7 + x1 + x2 � x3

x6 = 4 � x1 + 2x2 � 2x3

x1, x2, x3, x4, x5, x6 >= 0

Standard form

maximize
subject to

2x1 � 3x2

x1 + x2 = 7

x1 � 2x2  4

x1 � 0

maximize
subject to

Canonical form



The Brewer Problem*
• A small brewery produces ale and beer and wants to maximize profit 

• Production limited by scarce resources (corn, hops, malt) 

• The recipe for ale and beer require different proportions of resources

*Slides from Sedgewick and Wayne, Algorithms part 2, Coursera



Brewer Problem: Linear Programming Formulation
• Variables: A = the number of barrels of ale, B = the number of barrels of beer.



Brewer Problem: Feasible Region



Brewer Problem: Objective Function



Brewer Problem: Standard Form
• Add three slack variables, SC, SH, SM for the crop, hop and malt constraints 

• Introduce variable Z for the objective function

Canonical Form Standard Form



Vertices explored by the simplex algorithm



First Basic Feasible Solution
• A subset m=3 of the n=6 variables 

• Only those (basic) variables are non zero 

• It correspond to feasible solution 

• First basis, start with slack variables {SC, SH, SM} as the basis 

• A and B = 0 {SC=480, SH,=160, SM=119} can be read from the tableau, no algebra needed 

First solution



Pivot 1
• Take one non basic variable and turn it into a basic variable to improve the solution 

• Let us choose B to enter into the basis. If B increases, Z must increase. 

• What variable does B replace ? Answer: SC because if B increases, SC, SH and SM 
must decrease but SC will hit zero first.  

• Min ratio rule (480/15=32, 160/4=40, 1190/20=59.5)



Pivot 1 (cont)

Substitute B = (1/15) (480 – 5A – SC) and add B 
into the basis (rewrite 2nd equation, eliminate B in 
1st, 3rd, and 4th equations) 



Pivot 2

Substitute A = (3/8) (32 + (4/15) SC – SH ) and 
add A into the basis (rewrite 3rd equation, 
eliminate A in 1st, 2nd, and 4th equations) 



Optimality
• Basis = {A,B,SM}, Z = 800, A = 12, B = 28 

• Optimal solution. Stop pivoting when no objective coefficient is positive. Why 

• Any feasible solution satisfies the system of equations. 

• In particular: . Since ,  

• Current BFS has Z=800, thus it is optimal

Z = 800 − SC − 2SH SC, SH ≥ 0 Z* ≤ 800



Let’s translate this into Java (using 2D arrays)

m+1

n+m+1



Initialization of 2D Array
public class Simplex { 

    private double[][] a;   // tableaux 
    private int m;          // number of constraints 
    private int n;          // number of original variables 

    public Simplex(double[][] A, double[] b, double[] c) { 

        m = b.length; 
        n = c.length; 

        for (int i = 0; i < m; i++) 
            if (!(b[i] >= 0)) throw new IllegalArgumentException("RHS must be nonnegative"); 

        a = new double[m+1][n+m+1]; 
        for (int i = 0; i < m; i++) 
            for (int j = 0; j < n; j++) 
                a[i][j] = A[i][j]; 
        for (int i = 0; i < m; i++) 
            a[i][n+i] = 1.0; 
        for (int j = 0; j < n; j++) 
            a[m][j] = c[j]; 
        for (int i = 0; i < m; i++) 
            a[i][m+n] = b[i]; 

    } 
}

Cannonical Form: max cx st: Ax <= b, x>=0 
With b >= 0



Bland Rule: What variable to enter the basis for next pivot ?
Find entering column q using Bland's rule: index of first column whose objective 
function coefficient is positive.  

// lowest index of a non-basic column with a positive cost
private int bland() {
    for (int j = 0; j < m+n; j++)
        if (a[m][j] > 0) return j;
    return -1;  // optimal
}



Min Ration rule: What variable should exist the BFS

// find row p using min ratio rule (-1 if no such row)
// (smallest such index if there is a tie)
private int minRatioRule(int q) {
    int p = -1; // leaving row
    for (int i = 0; i < m; i++) {
        if (a[i][q] <= 0) continue; // only positive entries
        else if (p == -1) p = i;
        else if ((a[i][m+n] / a[i][q]) < (a[p][m+n] / a[p][q])) 

     p = i; // row p has min ration so far
    }
    return p;
}



Pivoting on row p, column q
private void pivot(int p, int q) {

    // everything but row p and column q
    for (int i = 0; i <= m; i++)
        for (int j = 0; j <= m+n; j++)
            if (i != p && j != q) a[i][j] -= a[p][j] * (a[i][q] / a[p][q]);

    // zero out column q
    for (int i = 0; i <= m; i++)
        if (i != p) a[i][q] = 0.0;

    // scale row p
    for (int j = 0; j <= m+n; j++)
        if (j != q) a[p][j] /= a[p][q];
    a[p][q] = 1.0;
}



Min loop of the simplex
private void solve() {
    while (true) {

        // find entering column q
        int q = bland();
        if (q == -1) break;  // optimal

        // find leaving row p
        int p = minRatioRule(q);
        if (p == -1) throw new ArithmeticException("Linear program is unbounded");

        // pivot
        pivot(p, q);
    }
}



But we were very lucky here 😮💨
• Because it was very easy to find a first BFC

If any of those coefficient was 
negative, we wouldn’t have 

been able to start with this BFS



Two Phase-Simplex
• Phase 1: find a BFS (using pivoting, with modified objective) 

• Phase 2: optimize original objective starting with BFS of phase 1



Finding an initial BFS

z = 2x1 � x2

x3 = 2 � 2x1 + x2

x4 = �4 � x1 + 5x2

x1, x2, x3, x4 >= 0

Standard form is (unfortunately not a BFS):



Finding an initial BFS
• Put all the variables to the right such that you have  

• constraints of type [0= bi+…variables…]  with bi >=0

z = 2x1 � x2

x3 = 2 � 2x1 + x2

x4 = �4 � x1 + 5x2

x1, x2, x3, x4 >= 0

z = 2x1 � x2

0 = 2 � 2x1 + x2 � x3

0 = 4 + x1 � 5x2 + x4

x1, x2, x3, x4 >= 0



Finding an initial BFS

• Replace 0 in each constraint with a new fresh variable and 
minimize their sum. By construction you have a BFS for this 
modified problem so you can use simplex Algo to start 
optimizing it.  

• If you arrive at z=0 you have a BFS to the initial problem, 
otherwise initial problem is unfeasible 

z = 2x1 � x2

0 = 2 � 2x1 + x2 � x3

0 = 4 + x1 � 5x2 + x4

x1, x2, x3, x4 >= 0

z = �x5 �x6

x5 = 2 � 2x1 + x2 � x3

x6 = 4 + x1 � 5x2 + x4

x1, x2, x3, x4, x5, x6 >= 0
<latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo=">AAADE3icbVLNbtQwEHbCXwk/3cKBAxeLFQiJskq23UIPRRVcOBaJbSttosjxerdWbSeyHbRLlL5F36BXeAFuqNc+AHcehMkPZbdlrE/zZWa+GWviJBPcWN//5bg3bt66fWflrnfv/oOHq521R/smzTVlQ5qKVB8mxDDBFRtabgU7zDQjMhHsIDn+UOUPvjBteKo+23nGIkmmik84JRZC8ZrzJBx5YcKmXBVEazIvC71opYe/YvwC7wDwJfASX2TVeT2LB43bwjgMveaz6tCvwrWfxQH4V4BZ/Dc6izfaDk2zWrrVSjcvy4O2fNAo/81u0lVhJQ1lLiyHDeVSFdtlQcsCtOsgAmwANgGD9WrCux3sl17I1LjdgRdGcafr9/za8HUStKSLWtuLO7/DcUpzyZSlghgzCvzMRtAQLiEYtMwNywg9JlM2AqqIZCYq6j9Y4ucQGeNJqgHK4jq6qCiINGYuE6iUxB6Zq7kq+L/cKLeTt1HBVZZbpmgzaJILbFNcPQc85ppRK+ZACNUc7orpEdGEWng0y1PqzcBagqtLuE72+73A7wWf+t3d9+2CVtBT9Ay9RAF6g3bRR7SHhog6J86Z88357p66P9yf7nlT6jqt5jFaMvfiD+UX2b0=</latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit>



Finding an initial BFS

z = �6 + 1x1 + 4x2 + 1x3 � x4

x5 = 2 � 2x1 + x2 � x3

x6 = 4 + x1 � 5x2 + x4

z = �x5 �x6

x5 = 2 � 2x1 + x2 � x3

x6 = 4 + x1 � 5x2 + x4

x1, x2, x3, x4, x5, x6 >= 0
<latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit><latexit sha1_base64="u4qFVffncs40at/Uxb3OoxlgMPo="></latexit>



1.Find a BFS 
• by solving a modified problem with Simplex for which it is easy to find a BFS 

2.Optimize starting from the BFS

Summary: Simplex is a two step method



Two phase simplex
public class TwoPhaseSimplex {

    private double[][] a;   // tableaux
    private int m;          // number of constraints
    private int n;          // number of original variables

    public TwoPhaseSimplex(double[][] A, double[] b, double[] c) {
        m = b.length;
        n = c.length;
        a = new double[m+2][n+m+m+1];

        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                a[i][j] = A[i][j];
        for (int i = 0; i < m; I++) a[i][n+i] = 1.0;
        for (int i = 0; i < m; I++) a[i][n+m+m] = b[i];
        for (int j = 0; j < n; j++) a[m][j] = c[j];
        // if negative RHS, multiply by -1
        for (int i = 0; i < m; i++) {
            if (b[i] < 0) {
                a[i][n+m+m] = -b[i];
                for (int j = 0; j <= n; j++)
                    a[i][j] = -a[i][j];
                a[i][n+i] = -1.0;
            }
        }
        // artificial variables form initial basis
        for (int i = 0; i < m; i++)
            a[i][n+m+i] = 1.0;
        for (int i = 0; i < m; i++)
            a[m+1][n+m+i] = -1.0;
        for (int i = 0; i < m; i++)
            pivot(i, n+m+i);

        basis = new int[m];
        for (int i = 0; i < m; i++)
            basis[i] = n + m + i;
    }
}



The two phases
private void phase1() {
    while (true) {
        // find entering column q
        int q = bland1();
        if (q == -1) break;  // optimal
        // find leaving row p
        int p = minRatioRule(q);
        assert p != -1 : "Entering column = " + q;

        // pivot
        pivot(p, q);
    }

if (a[m+1][n+m+m] > 0) 
throw new ArithmeticException("Linear program is infeasible");

}

private void phase2() {
    while (true) {

        // find entering column q
        int q = bland2();
        if (q == -1) break;  // optimal

        // find leaving row p
        int p = minRatioRule(q);
        if (p == -1) 

throw new ArithmeticException("Linear program is unbounded");

        // pivot
        pivot(p, q);
    }
}

// lowest index of a non-basic column with a positive cost - using 
artificial objective function
private int bland1() {
    for (int j = 0; j < n+m; j++)
        if (a[m+1][j] > EPSILON) return j;
    return -1;  // optimal
}

// lowest index of a non-basic column with a positive cost
private int bland2() {
    for (int j = 0; j < n+m; j++)
        if (a[m][j] > EPSILON) return j;
    return -1;  // optimal
}



Important remarks on computation
• Degeneracy: new basis, same extreme point (stalling quite frequent, don’t worry 

too much) 

• Cycling: get stuck by cycling through different bases that all correspond to same 
extreme point. If you use Bland rule, you are guaranteed to terminate 🥳



Simplex Time Complexity (wikipedia)

The simplex method is remarkably efficient in practice and was a great 
improvement over earlier methods such as Fourier–Motzkin elimination. 
However, in 1972, Klee and Minty gave an example showing that the worst-
case complexity of simplex method as formulated by Dantzig is 
exponential time. Since then, for almost every variation on the method, it has 
been shown that there is a family of linear programs for which it performs badly. 
It is an open question if there is a variation with polynomial time, or even sub-
exponential worst-case complexity.

The simplex algorithm has polynomial-time average-case complexity 
under various probability distributions, with the precise average-case 
performance of the simplex algorithm depending on the choice of a 
probability distribution for the random matrices.

But LP solving is not NP hard, polynomial algorithms exist (Ellipsoid, Interior points). Those polynomial time algorithms are not 
necessarily better than simplex (and also less incremental). 

Thus anytime you can reduce your problem to an LP, you know it can be solved in polynomial time. Example: Network Flow Problems

http://en.wikipedia.org/wiki/Fourier%E2%80%93Motzkin_elimination
http://en.wikipedia.org/wiki/Exponential_time
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Random_matrix


• Minimum Cost Flow 
‣ accommodate d unit of flow from s to t at minimum cost without exceeding the 

capacity.

Example of problem well solved by LP



Integer Linear Programming (NP-Hard)

maximize

subject to

How to solve using Branch & Bound 
What do you suggest as relaxation/upper-bound?

nX

j=1

cjxj

nX

j=1

aijxj bi for i= 1, 2, . . . ,m

xj 2 N for i = 1, 2, . . . , n



• If at the optimal solution of the linear programming 
relaxation, one variable is not an integer xi = v 

• Create two branches

Branch and Bound with LP relaxation

xi � dve

• Adding those constraints can only decrease the upper 
bound (pruning of upper bound < best-so-far feasible 
solution)

xi  bvc



ILP Branch and Bound DFS
function ILP_Solver(A, b, c): 
    return BranchAndBoundDFS(A, b, c, -inf, []) 

function BranchAndBoundDFS(A, b, c, bestValue, bestSolution): 
    // Solve the LP relaxation 
    solution, value = Solve_Simplex(A, b, c) 
    // If no feasible solution, return 
    if solution == null: 
        return bestValue, bestSolution 
    // If solution is integer, update bestValue and bestSolution if necessary 
    if IsInteger(solution): 
        if value > bestValue: 
            bestValue = value 
            bestSolution = solution 
        return bestValue, bestSolution 
    // Otherwise, branch on a non-integer variable 
    variableToBranch = FindNonIntegerVariable(solution) 
    floorValue = floor(solution[variableToBranch]) 
    ceilValue = ceil(solution[variableToBranch]) 
    // Add constraints to fix the variable at its floor value and solve the resulting problem 
    A1, b1 = AddConstraint(A, b, variableToBranch, "<=", floorValue) 
    bestValue, bestSolution = BranchAndBoundDFS(A1, b1, c, bestValue, bestSolution) 

    // Add constraints to fix the variable at its ceiling value and solve the resulting problem 
    A2, b2 = AddConstraint(A, b, variableToBranch, ">=", ceilValue) 
    bestValue, bestSolution = BranchAndBoundDFS(A2, b2, c, bestValue, bestSolution) 
    return bestValue, bestSolution 



Simplex Inventor

November 8, 1914 – May 13, 2005

George Dantzig

Dantzig’s roles in the discovery of LP and the simplex method 
are intimately linked with the historical circumstances, notably 

the Cold War and the early days of the Computer Age. 
Richard Cottle, Ellis Johnson, and Roger Wets



Exercise
• Optimize this current LP to optimality  

• How do you know it is optimal?

z = 20 + 2x1 � x2 � x3

x4 = 25 + x1 � x2 + 3x3

x5 = 12 � 2x1 � 3x2 � 4x3

x6 = 15 � 3x1 + x2 � 4x3

x1, x2, x3, x4, x5, x6 >= 0



Exercise
• Transform this into slack form and find (and) explain how to find an initial BFS.



Best software for MIP and LP are commercial
• In practice, people rarely implement the simplex themself because to make it 

efficient and robust you need to take advantage of scarcity, you need to deal with 
mathematical error and stability (artful engineering) 

• Best tools are commercial softwares, free for Universities and students



Example Gurobi Model in Python
# Create optimization model
m = Model('netflow')

# Create variables
flow = m.addVars(commodities, arcs, obj=cost, name="flow")

# Arc capacity constraints
m.addConstrs(
    (flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

# Flow conservation constraints
m.addConstrs(
    (flow.sum(h,'*',j) + inflow[h,j] == flow.sum(h,j,'*')
    for h in commodities for j in nodes), « node")

# Compute optimal solution
m.optimize()

# Print solution
if m.status == GRB.Status.OPTIMAL:
    solution = m.getAttr('x', flow)



For the project you will
• Implement a new form of initialization 

• Model the network flow problem with LP and compare it with a dedicated algorithm 
(next week) 


