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Outline

- Lagrangian Relaxation: A quite generic technique to compute lower
bounds

» Application to
- Resource Constrained Shortest Path Problems (RCSPP)
- The TSP (your favorite problem)



The Lagrangian relax intuition first
»+ Hard Problem:

- Maximize obj

- Subject to:

* Constraint 1 + Constraint 2

» |s transformed into an easier problem and solving this problem
gives a lower bound to initial problem

- Maximize obj + 4, * violation(constraint 1)

- Subject to:

* Constraint 2



Constrained Shortest Path (our hard problem)

min E Cij " Lij

(1,7)€A

subjectto:  flow conservation 110

Z tz-j-:z;‘ing

(,)€EA
Lij = {07 1}7V(Z7]) c A. (10,3)

* Example: Minimize distance with time constraint
* NP-Hard Problem!



Constrained Shortest Path

For a given path P, let

* ¢, denote its path cost,

e 1, denote 1ts path time

Example
» P=1-2-4-6
° Cp — 3

. t,=18
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Example: Feasible Solution
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Observation 1

»  Without the resource constraint, is the problem is easy?

(i,§)EA

flow conservation

L4 5 & {07 1}7\V/(@’]) c A



Observation 2

- This is thus a lower-bound on the Initial problem

s this term is positive or negative ?

V
min Z Cij CCZJ—F)\( Z tz’j '$ij_T>

(2,5)€A (4,7)€A

flow conservation

Z tij Xy <1
(1,§)€A

Lij S {07 1}7\V/(27]) c A

A >0



Observation 3

Is the optimum value to this problem also a lower
bound?

min Z Cz’j .CIZ‘ZJ—|—)\( Z tij 'xij_T)

(2,7)EA (2,7)EA

flow conservation




Example: Lower Bound (LB) Computation

L()\) — min Z Cij " Lij -+ )\( Z tij rLgg — T)

(2,7)€A (2,5)€A
@ (cijstij) >®7j)€A . ij .

(1,10) 21

(10,3) 16

For a given value of A, the lower bound is easily computed as a simple shortest path problem
(D1ijkstra algo).



Using LB to proof optimality of candidate sol.

» |s this (particular) path optimal knowing that:

15=L(1 =2) 110

(10,3)

+ Why do we do all this?

- Only to get a good lower-bound. We are actually looking after the

best possible one max £ (A4)
]



Objective: Compute best LB

The problem is now to find A leading to the optimal lower bound

,C* — H].)E\IX (mm Z (Cz’j ' Zlfij) — )\( Z (tij ' Zlfij) — T))

(2,7)€A (2,7)€A

flow conservation

Tij € {07 1}7V(Z7]) c A
Called Lagrangian Dual A >0

For a given value of A, the lower bound is easily computed
as a simple shortest path problem (Dijkstra algo).




The Brute force approach

ﬁ* — m)?JX (mm Z (Cij ° il?ij) — )\( Z (tij ° (Eij) — T))

(i,j)€A (4,J)€A

How conservation

feasible paths ri; € 10,1}, V(i,7) € A

A>0

» formulate the minimization problem as a minimization
over the set of all the feasible paths P:

L = max (min{cp + A(tp —T) : P € P})

|s this solution practical?



Brute force example (for a fixed A)
@ (cij, tig) )@

(1,7) A

(10,1) @

(2,2)

(1,10)

(10,3)

L* = max (min{cp + AN(tp —T) : P € P})

P cp | tp Cp—l—)\(tp—T) Cp—l—z(tp—T)
1246 | 3 | 18 3+ AN B
1256 | 5 | 15 5+ A 7
19456 | 14 | 14 14 14
13246 | 13 | 13 13— A 1
13256 | 15 | 10 15 — 4\ 7
feasible paths 139456 | 24 | 9 24 — 5 14
1346 | 16 | 17 16 + 3\ 29
13456 | 27 | 13 27 — 25
1356 | 24 | 8 24 — 6\ 12

What 1s the Lagrangian LB for lambda = 27




Brute force example (for a fixed A)

@ (ciz, ti) )@

(1,10)

(10,3)

all possible
feasible paths

LF = max (min{cp + A\(tp —T): P € P})
(1.7)
(10,1) @
(2,2)

P cp | tp Cp—l—)\(tp—T) Cp—|—2(?fp—T)
1-2-4-6 3 | 18 3+ 4\ 11
1-2-5-6 5 | 15 D+ A 7

1-2-4-5-6 14 | 14 14 14
1-3-2-4-6 13 | 13 13— A 11
1-3-2-5-6 15 | 10 15 — 4\ 7
1-3-2-4-5-6 | 24 | 9 24 — S\ 14
1-3-4-6 16 | 17 16 4+ 3\ 22
1-3-4-5-6 27 | 13 27 — A 25
1-3-5-6 24 | 8 24 — 6\ 12
min 7




Finding the optimum A (visual representa

tion)

cp | tp Cp—l—)\(tp—T) Cp—l—z(tp—T)
. . . . 1-2-4-6 3 18 3+ 4\ 11
Every feasible path is a line, for each A, the lower bound is the 1256 | 5 |15 54\ .
¢ * . . . 1-2-4-5-6 14 | 14 14 14
minimum value of all the paths (piecewise linear convex aone |13 |13 3 o
function). The goals is to find A that maximises this function to 1-3-2-5-6 | 15 | 10 15 — 4\ 7
. 1-3-2-4-5-6 | 24 9 24 — B\ 14
find the strongest possible lower bound 346 |16 | 17 16+ 3 99
1-3-4-5-6 27 | 13 27 — A\ 25
1-3-5-6 24 8 24 — 6\ 12
|\ min 7

cCp + )\(tp — T)
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Solution 1: Linear Programming

P cp | tp Cp—|—)\(tp—T) Cp—I—Q(tp—T)
1-2-46 | 3 | 18 3+ 4\ 11
. . . 1-2-5-6 | 5 | 15 5+ A 7
Computlng the optimum A with 1-2-4-5-6 | 14 | 14 14 14
. . . 1-3-2-4-6 | 13 | 13 13—\ 11
inear programming (simplex) 13256 | 15 | 10 | 15 4\ 7
1-3-2-4-5-6 | 24 | 9 24 — 5 14
1-3-4-6 | 16 | 17 16 + 3\ 22
1-3-4-5-6 | 27 | 13 27 — A 25
1-3-5-6 | 24 | 8 24 — 6 12
min 7

L* = max (min{cp + A(tp —T): P € P})

= max 2z
subject to: z<cp+ Atp—T) ,VP P

it Is a linear program but with an
exponential number of

constraints (one for each path)
thus Impracticable.




Solution2: Subgradient Algorithm

756
Rc2-5-6

cCp + )\(tp — T)

—10

P tp Cp—l—)\(tp—T) CP—I—Z(tP—T)
1-2-4-6 18 3+ 4A 11
1-2-5-6 15 5+ A 7

1-2-4-5-6 14 14 14
1-3-2-4-6 13 13 — A\ 11
1-3-2-5-6 10 15 — 4\ 7
1-3-2-4-5-6 9 24 — 5 14
1-3-4-6 17 16 + 3\ 22
1-3-4-5-6 13 27 — X 25
1-375-6 8 24 — G\ 19
min 7
lolates time
comstraint (<14)
=2-5-6




Subgradient

Sub-gradient Algorithms: Idea is to move A to the right when on the
red area, to the left when on the blue area.
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M= A atiteraton k
Uk= step size at iteration k
Px= path computed at iteration k

Ak has no guarantee to
iIncrease at each iteration
but if the step size is
decreasing enough but not
too much, we will converge
toward the optimum




Computing the optimum A: subgradient optim

0
. Convergence guarantee if y;, — 0 and Z M, — 00
k=1

- Note that Ek (Lagrangian LB) has no guarantee to increase at
each step

At iteration k if P violates time con-
straint, increase A, otherwise decrease it.

Akl max((), A+ L (tpk — T)




typical lower bound evolution along
iterations, no guarantee to
monotonically increase at each step
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Constrained Shortest Path Algorithm

Result: A lower bound £x and a potentially good (not proven optimal)
feasible candidate path Px
Lx < OO,]{%O,MQZI,AQ:O
Px* < shortest path using weights t;;
if (tp* > T) then
‘ return the problem is unfeasible
end
while 1 > € do
Compute shortest path Py using weights c¢;; + Axti;
L Cp, + )\k(th — T)
if L. > Lx then

Lx +— L It has not guarantee to find the best
f P is feasible th one. But we have a lower-bound at
1L Mg 15 1€as1DIC then the end thus we can compute the
‘ Px «+ P, « gap »: (CP* _£*>/£*
end .
The gap should be non decreasing
end
Update A\ and upg
k<+—k+1

end



For our problem

L* :m§X (min{cp + A\(tp —T) : P € P})

— IMNax 2

subject to: z<cp+ Atp—T) ,VP P

- The sub gradient method is over-complex in this case because we
only have one multiplier (but it is very useful because you
generally have many lambda’s)

> YOUu can use a binary search instead to discover the optimum
lambda.



How good is the Lagrangian relaxation LB?

As good as the linear relaxation:

L+ = min E Cij * Lij
(4,5)€A

flow conservation
Z tij - Tij <1
(2,§)€A
W@J¥{91} i€

But the linear relaxation wi
give you feasible solutions
during the process ...




Lagrangian Relaxation for the TSP

- A TSP is a combination of two constraints

- The degree of each node is exactly 2

- The selected edges form a single connected component
(otherwise sub tours are still possible)

- The two constraints can be relaxed
- Minimum 1-Tree relaxation

- Minimum Assignment Problem in a bipartite graph



One-Tree

+ One-tree = spanning tree of subgraph {2,..n} + two edges
connected to node 1

¢

- |n a weighted graph, we can find the minimum one-tree



Minimum 1-Tree Relaxation
+ On edges 1,...,n,

1.Find the minimum spanning tree (MST) on {2,...,n}

2.Reconnect node 1 with the two lightest edges

The result is a graph with exactly n edges and exactly one cycle,
node 1 has a degree of 2 but the degree of the other nodes is not
necessarily 2.




Observation

»  Since a Hamiltonian circuit is a degree-constrained one-tree, this
problem is completely equivalent to the minimum TSP

min er ‘W,

€

selected edges {e | x, = 1} form a 1-tree

Z x,=2,Vi

e€s(i)
x, € {0,1},Ve

» And thus equally NP hard to solve, let's relax it ...



Introducing multipliers ...

+ Add a zero term (introduce multipliers, one for each node)

&
|

\ —
min ) x,-w,+ ) 12— ) X,
e l e€o(i)

selected edges {e | x, = 1} form a 1-tree

Z x,=2,Vi

e€s(i)
x, € {0,1},Ve

Z




... and then relaxing ...

+ Add a zero term (introduce multipliers, one for each node)

| s Domamd Sim MMHMM@ sl o W&Ol

min ) x,-w,+ ) 12— ) X,

e e€o(i)

< selected edges {e | x, = 1} form a 1-tree
Y r=2v

e€o(1)

. x, € {0,1},Ve

.




Lagrangian Lower Bound

+ Add a zero term (introduce multipliers, one for each node)

L(r) = miane W, + Zﬂi(2 — 2 X,)

f\

T¢ By

selected edges {e | x, = 1} form a 1-tree y
J\Afdw(ma' X

x, € {0,1},Ve
Lek's see ...

€

/
+ And the goal is of course to maximize this lower-bound

£ * = max & (n)



Lagrangian Lower Bound

+ Add a zero term (introduce multipliers, one for each node)

L(r) = miane W, + Zﬂi(2 — 2 X,)

f\

T¢ By

selected edges {e | x, = 1} form a 1-tree y
J\Afdw(ma' X

x, € {0,1},Ve
Lek's see ...

€

/
+ And the goal is of course to maximize this lower-bound

£ * = max & (n)



Lagrangian Lower Bound

+ Add a zero term (introduce multipliers, one for each node)

L(r) = miane W, + Zﬂi(2 — 2 X,)

f\

T¢ By

selected edges {e | x, = 1} form a 1-tree y
J\Afdw(ma' X

x, € {0,1},Ve
Lek's see ...

me&y\@ WC\-%\AI/C@’WSJ‘DAA‘/ FIONE
o~ N S SL‘MP{L
< () = min Z X, (w,—m — 71']) + 2 Z TT; >m~\ ome—hec
e={i.j) i
selected edges {e | x, = 1} form a 1-tree )
x, € {0,1},Ve

€

)
- Can be rewritten as




Example: Min One-Tree Lower-Bound

One tree lower-bound: 22




Example: Min One-Tree Lower-Bound

L(m)=min Y x,-(W,—m—m)+2) m

e={i.j} i
selected edges {e | x, =1} form a 1-tree
x, € {0,1},Ve

Lower-Bound = 6+7+6+0=25




» Notice that 4+7+8+6 = 25 (obtained with the same set of edges of
our one-tree but with original weights) is gives the same value, is it

pure chance ?

7 71'1

4 — T —

7r3 ) —

6 i3 —

+ No! It is a consequence of the fact that we are working
with multipliers that sum to O

Z]Z'i=()



Proof of optimality
- It Is thus interesting to work with multipliers summing to zero since:

- The tour found in the Lagrangian relaxation has exactly the same
weight as in the original graph.

- Therefore if the tour of the Lagrangian relaxation is a Hamiltonian
circuit, it is optimal since we have found an upper-bound (feasible
solution) equal to the value of our lower-bound.




Update of the multipliers (sub-gradient)

» Intuition: nodes having a too high degree (>2) should become less
attractive and nodes with a too low degree (=1) should become

more attractive.

r) 5*‘!’ JQL (
7 < m; + (2 — deg(i)), V;



Update of the multipliers (sub-gradient)

7 < m; + (2 — deg(i)), V;



Does the update rule guarantee that ?

Z m; = 0 should remain true after the update

l

7 < 1+ w (2 —deg(i)), V,

+ Let’s verify this

Zﬂ{= Z(ﬂi"l'z//tk_//tk'deg(i)) = (Zﬂi)+2- V '//tk_//tkz deg(i)



Lagrangian Relaxation
/lk * oCZk
2. (deg(i) — 2)?

. Mk =

. Ay < A 1f 1mprovement , 0.9 - 4, otherwise

Valenzuela, C. L., & Jones, A. J. (1997). Estimating the Held-Karp lower bound for the geometric TSP. European
Journal of operational research, 102(1), 157-175.



Final Algo

Result: A lower bound for the TSP
m; < 0, \4)

A<+ 0.1

[b < o0

best <— oo

while A > € do

(Ib',1 — tree) < L(m)

if 1sHamiltonian(l — tree) then
optimal TSP found

break

end

if [b" > [b then
A X-09

end

) \-1b
HoS S (deg(i)—2)2
m — 5 + (2 —deg(t)), V;
b — b
best <— max(lb, best)
end

return best




History

Joseph-Louis Lagrange  Hugh Everett Il Naum Zuselevich Shor

1736-1813

1930-1982 1937-2006

method of Lagrange multipliers (named after Joseph Louis he developed the use of generalized subgradient methods

Le}grange[11) IS a s_trategy_for finding the local maxima and Lagrange multipliers for operations
minima of a function subject to equality constraints. research


http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Lagrange_multipliers
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Operations_research

Michael Held & Richard M. Karp (IBM)

January 3, 1935 (age 87)

20 cities -
2432,902.008,176,640,000 Possible Routes
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