
Advanced Algorithms for Optimization
LINFO2266

Branch & Bound

Pierre Schaus

Brute Force: Tree View (⚠ for now, assume DFS)

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0

x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

Can we reduce this search space
by cutting some branches?

What upper-bounding procedure do you suggest?

maximize 28x1 + 30x2 + 20x3

subject to 4x1 + 6x2 + 4x3 9

xi 2 {0, 1} 8i

• Maximization Problem P : maximize obj

• Assume I have a feasible solution in hand (for instance obtained
with a greedy algorithm) with objective obj*

• Assume I can decompose my problem: P = P1 ∪ P2

• Assume I have an upper-bound procedure UB(P)
‣ Gives me an upper bound on obj for problem P

• If UB(P1) ≤ obj*, I can discard exploration of P1 (idem for P2)

Branch & Bound: The Intuition

P1 P2

P

Do you prefer
small or large
upper-bound?

Knapsack: Upper-Bound

maximize 28x1 + 30x2 + 20x3

subject to 4x1 + 6x2 + 4x3 9

xi 2 {0, 1} 8i

What upper-bounding procedure do you suggest?
(Think about relaxation)

Branch & Bound: Capa relaxation

2

1

3 4

5 6

6

8

9 10

11

x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0

value
space left

upper-bound
best-known

??
9

78
??

??
5

78
??

- -
-1
- -
- -

48
1

48
48

28
5

28
48

- -
-1
- -
- -

30
3

30
48

??
5

48
??

??
3

50
48

??
9

20
48

??
9

50
48

Relax capa
constraint

maximize 28x1 + 30x2 + 20x3

subject to 4x1 + 6x2 + 4x3 9

xi 2 {0, 1} 8i

Dominated

Violation
Solution

DFS here but
we could use

another
strategy

• Relax the integrality constraint (called linear relaxation)

• Sort the items according to ratio vi/wi (we assume it is the case)

• Find the critical item

Knapsack - Linear Relaxation = Easy problem

maximize 28x1 + 30x2 + 20x3

subject to 4x1 + 6x2 + 4x3 9

xi 2 [0, 1] 8i

UB =
X

i<j

vi +
(C �

P
i21..j�1 wi)

wj
· vj

Exercise: Prove this solves the linear relaxation

j = min{i 2 I :
X

k21..i

wk > C}

Linear Relaxation

• Why is this the optimal linear relaxation ? Sketch of proof. Instance
with C=14 (Capa)

Linear Relaxation

index 0 1 2 3 4
v/w 4 3.66 3.6 3 1
v 28 22 18 6 1
w 7 6 5 2 1
x* 1 1 1/5 0 0

Bound = 28+22+1/5*18=53.6

Let i* = “critical item index”
Assume x* is not optimal but instead x’ is.

Then there exist two variables with index i < j such that xi’<1 and xj’ >0. This solution can be
improved by doing xi’+𝜺 and xj’-𝜺 since the items are sorted decreasingly by value/volume

(contradiction)

Branch & Bound: Linear relaxation

2

1

3 4

5 6

6

x1=1 x1=0

x2=1 x2=0

x3=1 x3=0

value
space left

upper-bound
best-known

??
9

53
??

??
5

53
??

- -
-1
- -
- -

48
1

48
48

28
5

28
48

??
5

48
??

??
9

45
48

linear
relaxation

Dominated

Violation
Solution

maximize 28x1 + 30x2 + 20x3

subject to 4x1 + 6x2 + 4x3 9

xi 2 [0, 1] 8i

Branch & Bound Implementation

https://github.com/pschaus/linfo2266

public static void minimize(OpenNodes openNode) {

 double upperBound = Double.MAX_VALUE;
 int iter = 0;

 while (!openNode.isEmpty()) {
 iter++;
 Node n = openNode.remove();
 if (n.isFeasible() && n.lowerBound() < upperBound) {
 upperBound = n.lowerBound();
 }
 else if (n.lowerBound() < upperBound) {
 for (Node child: n.children()) {
 openNode.add(child);
 }
 }
 }
 System.out.println("#iter:"+iter);
}

Implementation BranchAndBound.java

Collection with open nodes

Pruning by upper-bounding

Update best solution

interface Node {
 double lowerBound();
 boolean isFeasible();
 List<Node> children();
}

interface OpenNodes<N extends Node> {
 void add(N n);
 N remove();
 boolean isEmpty();
 int size();
}

Node Interfaces

Collection with open nodes.
Think about possible ways to

implement DFS/BFS 🤔

This implementation will be problem
specific. A node contains the state
of a problem modified according

the “branching” decisions

class NodeKnapsack implements Node {

 int[] value;
 int[] weight;
 int selectedValue;
 int capaLeft;
 int index;
 boolean selected;
 NodeKnapsack parent;
 double ub;

 public boolean isFeasible() {
 return index == value.length - 1;
 }

@Override
public List<Node> children() {

 List<Node> children = new ArrayList<>();
 // do not select item at index+1
 Node right = new NodeKnapsack(this, value, weight,
 selectedValue,
 capaLeft,
 index + 1, false);
 children.add(right);
 if (capaLeft >= weight[index+1]) {
 // select item at index+1
 Node left = new NodeKnapsack(this, value, weight,
 selectedValue + value[index + 1],
 capaLeft - weight[index + 1],
 index + 1, true);
 children.add(left);
 }
 return children;
}

}

Knapsack Node Implementation

index 0 1 2 3 4

v 28 22 18 6 1

w 7 6 5 2 1

• Best-First Search
‣ Process first the promising nodes (i.e. with the best upper-bound)
‣ This strategy is generally very good when you have a good upper-bounding procedure
‣ Drawback: you don’t really have a control on the number of open-nodes (be careful

with the memory you consume). In the worst-case you have a breadth first search

• Depth-First Search
‣ Process first the deepest and left-most node.
‣ Drawback: maybe-less good for proving optimality and to discover quickly a good first

feasible solution
‣ Advantage: Memory proportional to the height of the search tree (typically linear)

• Hybrid: Start with Depth-First to find a good feasible solution then continue with Best-
First

Two different search strategies

BFS vs DFS

A

B C

D E F G

• B(breadth) FS

• Current = A, Queue = [B,C]

• Current = B, Queue = [C,D,E]

• Current = C, Queue = [D,E,F,G]

• DFS

• Current = A, Stack = [C,B]

• Current = B, Stack = [C,E,D]

• Current = D, Stack = [D,E]

DFS and Heuristics

A

B C

D E F G

• The first solution should look good (have a reasonable quality).

• Why ? Because it will help pruning with the B&B

• How to make it look good ?

First solution
found

interface OpenNodes<N extends Node> {
 void add(N n);
 N remove();
 boolean isEmpty();
 int size();
}

Open Node Interfaces
Collection with open nodes.
Think about possible ways to

implement DFS/BFS 🤔

class DepthFirstOpenNodes<N extends Node> implements OpenNodes<N> {

 Stack<N> stack;

 DepthFirstOpenNodes() {
 stack = new Stack<N>();
 }
 public void add(N n) {
 stack.push(n);
 }
 public N remove() {
 return stack.pop();
 }
 @Override
 public boolean isEmpty() {
 return stack.isEmpty();
 }
 @Override
 public int size() {
 return stack.size();
 }
}

class BestFirstOpenNodes<N extends Node> implements OpenNodes<N> {

 PriorityQueue<N> queue;

 BestFirstOpenNodes() {
 queue = new PriorityQueue<N>(new Comparator<Node>() {
 @Override
 public int compare(Node o1, Node o2) {
 double lb1 = o1.lowerBound();
 double lb2 = o2.lowerBound();
 if (lb1 < lb2) {
 return -1;
 } else if (lb1 == lb2) {
 return 0;
 } else {
 return 1;
 }
 }
 });
 }
 public void add(N n) {
 queue.add(n);
 }
 public N remove() {
 return queue.remove();
 }
 @Override
 public boolean isEmpty() {
 return queue.isEmpty();
 }
 @Override
 public int size() {
 return queue.size();
 }
}

Start the Knapasack

public static void main(String[] args) {

 int[] value = new int[]{1, 6, 18, 22, 28};
 int[] weight = new int[]{2, 3, 5, 6, 7};
 int capa = 11;
 int n = value.length;

 OpenNodes<NodeKnapsack> openNodes = new BestFirstOpenNodes<>();
 //OpenNodes<NodeKnapsack> openNodes = new DepthFirstOpenNodes<>();

 NodeKnapsack root = new NodeKnapsack(null,value,weight,0,capa,-1,false);
 openNodes.add(root);
 BranchAndBound.minimize(openNodes);
}

• Very important for depth first search

• It is better to branch and include first the next item with the largest
ration v/w. Simple sort prior to the search

Heuristic

val items = Array((1,1),(6,2),(18,5),(22,6),(28,7)) // (value,weight)
// sort items in increasing value/weight ration
scala.util.Sorting.quickSort(items)(Ordering.by {case (v, w) => w / w })
val c = 11

val root = new KnapsackNode(
 items = items,
 obj = 0,
 selected = Nil,
 capa = c,
 selectable = (0 until items.size).toList)

val bestSol = BnB.solve(new PQueue(root))

Branch & Bound Experimentation:

• Importance of relaxation
• Importance of queue implementation
• Importance of heuristic

Optimality Gap

• Can we provide some guarantee of how “sub-optimal” the best so
far solution is ?

• Yes: This is the optimality gap.

• You should compute the most optimistic upper-bound (maximum
upper-bound of all the open-nodes). Let us call it U.

• Gap = (U - bestObj) / bestObj

• Best-First-Search is better than Depth-First-Search to close the
gap.

The Optimality Gap

Other B&B Examples

• Can you imagine a good lower-bound procedure for solving the
TSP?
‣ Hint: Think about relaxing « Hamiltonian tour » constraint.

TSP (your project)

• Every tour is a tree (but not the opposite), hence the relaxation is to
use the minimum spanning tree

The Spanning Tree Relaxation

• For a given vertex, say vertex 1, a 1-Tree is a tree of {2,3,...n} +2
distinct edges connected to vertex 1.

• 1-Tree has precisely one cycle (stronger relaxation than the spanning
tree since more constrained).

• Lower-Bound: To find minimum Weight 1- Tree, First Find minimum
spanning tree of {2,3,...n} vertices, and add two lowest cost edges
incident to vertex 1.

The One-Tree Relaxation

Spanning Tree Relaxation

One-Tree Relaxation

Branching for the TSP: Partial-Tour vs Excluded Edges

Package “branchandbound”(don’t forget to pull to get the latest update).

4 steps (impel) + Report:

1.Implement the simple one-tree based bound procedure in the SimpleOneTree
class. You can test your result by executing SimpleOneTreeTestFast.

2.Implement the branch and bound for the TSP in the BranchAndBoundTSP
class which will use the SimpleOneTree bound procedure you just implemented
earlier. You can test your result by executing BranchAndBoundTSPTestFast.

3.(Next week) Implement an enhanced bound calculation for the one-tree based
on Lagrangian relaxation in the HeldKarpOneTree'' class. You can
test your result by executing ``HeldKarpOneTreeFast.

4.(Next week) Replace in your branch and bound for the TSP
BranchAndBoundTSP, the bound calculation by your new reinforced bound. You
can test your result by executing BranchAndBoundTSPTest.

The Branch and Bound Project

• Although we treat with NP-Hard problems:

• Solving them with Branch and Bound requires good (ie. tight)
upper/lower bounds for maximization/minimization.

• Bound computation must be fast (most often using well known
polynomial algorithms).

• Optimization is strongly related to algorithms and implementation.

Combinatorial Optimization is the art of relaxing

History

Richard E. Bellman
1920-1984

Dynamic Programming 1950’s

Georges Dantzig
1914-2005

Knapsack Relaxation 1957

Ailsa Land & Alison (Doig) Harcourt
Branch and Bound 1960

