
Dynamic Programming

LINFO2266

Pierre Schaus

https://github.com/pschaus/linfo2266

Knapsack Problem

Brute force recursive approach

 Motivation

WARNING VIRUS DETECTED!!!! AFTER 5
MINUTES YOUR COMPUTER WILL BE
FORMATED!!!!

GB’s of personal data
lost !!!

10 GB

The problem
WARNING VIRUS

10 GB

1

2GB

1

2GB

1

2GB

10

2GB

10

2GB

13

8GB

1

3GB

?
Which file to save

to maximize my value?

• the set of items:

• is item i selected:

• Objective: Maximize

• Constraints:

Knapsack Problem

I

xi 2 {0, 1}
P

i2I vixi

P
i2I wixi  C

Maximize value of
selected items

Under capacity
constraint

• Yes if the related decision problem is NP-Complete

• We know subset sum is NP-Complete

• Exercise: Find a (polynomial) reduction from subset sum to knapsack (if
you can solve knapsack efficiently, then you can solve subset sum
efficiently).

Is this problem NP-Hard?

X

i2I

vixi � V

X

i2I

wixi  C

xi 2 {0, 1}

Natural numbers c1, . . . , cn,K.

Find S ✓ {1, . . . , n} s.t.
X

j2S

= K?
X

j2S

cj = K

• Try every possible solutions

‣ n items, 2n solutions

‣ n = 50, 1 ms to test one solution, > 30.000 years

Solving Knapsack: Brute-force

Size

Time

• Assume I = {1,…,n}

• Optimal objective of the problem with capacity k and items {1,…,j} is
O(k,j)

• We are interested in O(C,n)

Knapsack: Recursive Bruteforce

maximize

subject to

X

i2{1,...,j}

vixi

X

i2{1,...,j}

wixi  k

• Notation: O(k,j) = optimal solution on items 0..j with capacity k

• Should we select item j (if wj ≤ k)?

‣ If we don’t select it the best solution is O(k,j-1)

‣ If we select it the best solution vj +O(k-wj,j -1)

• Recursive equations:

‣ General case:
✴ O(k,j) = max(O(k,j-1) , vj +O(k-wj,j-1)) if wj ≤ k
✴ O(k,j) = O(k,j-1) otherwise

‣ Base case:

✴ O(k,0) = 0 for all k

Knapsack Recursive Bruteforce

Bellman Recurrence Equations

Knapsack Problem

Brute force recursive approach

Java Implementation

Pure brute force: backtrack if capa < 0

1 6 4 3 2 9

1 0 6 4 3 9

1 6 4 9

6 9

9

11

3 2 1 0 6 5 4 11

3 2 8 0 6 5 11

3 8 6 11

8 11

11

Index 0 1 2 3 4

Value 1 6 18 22 28

Weight 2 3 5 6 7

State = Capa Left

select item do not select item

0

1

2

3

4

Index

Knapsack Problem

Dynamic Programming

Some States are equivalent: DP idea don’t recompute them

1 6 4 3 2 9

1 0 6 4 3 9

1 6 4 9

6 9

9

11

3 2 1 0 6 5 4 11

3 2 8 0 6 5 11

3 8 6 11

8 11

11

Index 0 1 2 3 4

Value 1 6 18 22 28

Weight 2 3 5 6 7

State = Capa Left

select item do not select item

0

1

2

3

4

Index

Store the state and retrieve them

1 6 4 3 2 9

1 0 6 4 3 9

1 6 4 9

6 9

9

11

3 2 1 0 6 5 4 11

3 2 8 0 6 5 11

3 8 6 11

8 11

11

Index 0 1 2 3 4

Value 1 6 18 22 28

Weight 2 3 5 6 7

State = Capa Left

select item do not select item

0

1

2

3

4

Index

• For the knapsack we can also use a table since the capacity is fixed

• We need two dimensions:

‣ Index (of item in the search tree)

‣ Capacity left

A MAP is needed

Knapsack DP: Implem with Table

(v,w) - 1,2 6,3 18,5 22,6 28,7
k 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 1 1 1 1 1
3 0 1 6 6 6 6
4 0 1 6 6 6 6
5 0 1 7 18 18 18
6 0 1 7 18 22 22
7 0 1 7 19 22 28
8 0 1 7 24 23 28
9 0 1 7 24 28 29
10 0 1 7 25 28 34
11 0 1 7 25 40 40

Optimal Value
What is the time complexity?

How to retrieve the solution?

• See code KnapsackTable

• Time and Space Complexity: Ɵ(C.n)

• Is this polynomial ?

• No! Because log(C) bits are necessary to represent C, the complexity
is exponential wrt to the input size.

• We say it is pseudo-polynomial:

‣ Can be considered as roughly polynomial for small value of C
‣ But quickly becomes expensive to compute for large values of C

• Hint: For large C, you can scale down (approximation)

Knapsack DP: Implem with Table

suggestion: divide C and wi’s by their
greatest common divisor

An NP-complete (or NP-hard) problem is weakly NP-complete (or
weakly NP-hard), if there is an algorithm for the problem whose running
time is polynomial in the dimension of the problem and the magnitudes
of the data involved (provided these are given as integers), rather than
the base-two logarithms of their magnitudes.

http://en.wikipedia.org/wiki/Weakly_NP-complete

Not every NP-complete are weakly NP-complete. TSP is NP-complete in
the strong sense, bin-packing as well.

Knapsack is Weakly NP-Hard

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Weakly_NP-complete

• Alternatively we can use a standard hash-table for the MAP using

HashMap<Pair<Integer,Integer>, Integer> cache;

• See code KnapsackHash.java

Index Residual
capacity

Objective
Value

Knapsack DP: Implem with cache

• Time and Space

• Complexity: Ɵ(C.n) O(C.n)

Only 30/72 cells
are stored in the

cache

(v,w) - 1,2 6,3 18,5 22,6 28,7
k 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 1 1 1 1 1
3 0 1 6 6 6 6
4 0 1 6 6 6 6
5 0 1 7 18 18 18
6 0 1 7 18 22 22
7 0 1 7 19 22 28
8 0 1 7 24 23 28
9 0 1 7 24 28 29
10 0 1 7 25 28 34
11 0 1 7 25 40 40

• We have seen an O(nC) DP algo

• We can also design a O(nV) DP algo with

• Interesting if C is large but values are small

Knapsack DP: An nV algorithm

maximize
X

i2I

vixi

subject to
X

i2I

wixi  C

xi 2 {0, 1}

V =
X

i2I

vi

• Exercise: Design a O(nV) DP algo. Hint: subproblem
O(i,p) = minimum weight using only items 1..i with total
value equal to p.

Nice exam
question?

Optimization of a Range Partitioning

Given

(1) an arrangement S=[s1, . . . , sn] of nonnegative numbers

(2) an integer k,

The objective is to partition S into k or fewer ranges, to minimize the maximum sum over all the
ranges without reordering the numbers.

Example:

S = [1, 2, 3, 4, 5, 6, 7, 8, 9] and k = 3.

An optimal partition into contiguous ranges is

 [1, 2, 3, 4, 5], [6, 7], [8, 9]

with the largest one having a sum of 17.

Problem Statement

S = [1, 2, 6, 3, 1, 4, 5, 6, 7, 8, 5] and k = 4.

Optimal value?

•13

•9

•10

•15

•12

Just to make sure ;-) ?

• Formulate this problem as a dynamic program. Write recurrence
equations (don’t forget the base-cases)  

• Sketch the code to solve it.  

• What is the time complexity to solve this dynamic program (justify).  

•Illustrate the execution and solution of your dynamic program on the
following arrangement

•S = [10,2,3,4,5,1,7,8,4].  

Typical Exam Question

• Formulate this problem as a dynamic program.Write recurrence
equations (don’t forget the base-cases)  

A recurrence equation is given but

•It is not understandable 😢.

•The range of parameters are not specified 😢 and

•What they represent is not explained 😢 .

Typical Exam mistakes

• Unfortunately you should get a grade of zero for this answer.

• Can you fix this?

Example of bad (incomplete) answer

What is i,l ? What does O
represent?What is the range of j

No base case, what are the ranges for
i,l? Can it be negative?

O(i, l) = maxj min ((si + si+1 . . .+ sj), O(i, l � 1))

Choose the correct recurrence equation

🤔

Let O(i, l) with i 2 [1..n], l 2 [2..k] denote the optimal value of the problem
on the prefix sequence [s1, ..., si] using at most l partitions. O(i, l) =

1 :max (O(i� 1, l), O(i� 1, l � 1) + si)

2 :min (O(i� 1, l), O(i� 1, l � 1) + si)

3 : max
j2[1..i�1]

min ((sj+1 + sj+2 + . . .+ si), O(j, l � 1))

4 : min
j2[1..i�1]

max ((sj+1 + sj+2 + . . .+ si), O(j, l � 1))

5 : min
j2[1..i�1]

max ((si+1 + si+2 + . . .+ sj), O(j, l � 1))

[s1, . . . , sj, sj+1, … , si ,…, sn]

Explanation

O(i, l) = minj2[1..i�1] max ((sj+1 + sj+2 + . . .+ si), O(j, l � 1))

O(j,l-1) ∑

max
Max is necessary in case the
last partition [sj+1, … , si] is the
heaviest one

• O(i,l) i ∈ [1..n] and l ∈ [1..k].

• The base case is the one with one partition:

‣ O(i,1) = s1+ . . . + si

• And the one with the sequence of length 1

‣ O(1,l) = s1 for all l in [1..k].

• And this is not all, in your answer don’t forget to characterize the
optimal solution… :

✴ The optimal solution is O(n,k)

Base case

• O(5,2) = min(max(10,5),max(6,4+5),max(3,(3+4+5),max(1,(2+3+4+5))

• O(5,2) = min(10,9,12,14) = 9

Table-Based Implementation

k/s 1 2 3 4 5 6 7 8 9

1 1 3 6 10 15 21 28 36 45

2 1 ?

3 1

O(i, l) = minj2[1..i�1] max ((sj+1 + sj+2 + . . .+ si), O(j, l � 1))

• Time complexity to fill in the table ?

• Can we go faster to compute ?

Time-Complexity Analysis

O(i, l) = minj2[1..i�1] max ((sj+1 + sj+2 + . . .+ si), O(j, l � 1))

Range Partitioning

https://github.com/pschaus/linfo2266

Is it possible to make a generic
Dynamic Solver ?

• Because every dynamic program can be reduced to a shortest (minimization)
or (longest) path problem in a Directed Acyclic (Layered) Graph (DAG).

•

Yes!

Longest path problem in a general
graph is an NP-Hard problem but not

in a DAG

• Because every maximization dynamic program can be reduced to a longest path
problem in a Directed Acyclic (Layered) Graph (DAG)

Yes!

Let L(i) the longest path from i to the tail node t.

Can you give the DP recurrence equation ?

L(i) = max
j∈succ(i)

cost(i, j) + L(j)

• Linear time bottom-up
Finding the longest path

28

272626

3 4 2

9 12 13 8

18 20 23 22

L(i) = max
j∈succ(i)

cost(i, j) + L(j)

• Is composed of three classes:

‣ State (= nodes of the DAG)

‣ Transition = Edges (directed) of the DAG

‣ The Model is able to generate successor states from a state and

also identify the root r and the sink t

• A global Hash Table is used during the solving process

HashMap<State, Double> table;

• Therefore State’s must be hashable

The framework we propose

Best objective value for the state

abstract class State {

 abstract int hash();

 abstract boolean isEqual(State state);

 @Override
 public int hashCode() {
 return this.hash();
 }

 @Override
 public boolean equals(Object o) {
 if (o instanceof State) {
 State state = (State) o;
 return isEqual(state);
 }
 return false;
 }

}

State.java

public class KnapsackState extends State {

 int item, capacity;

 public KnapsackState(int index, int capacity) {
 this.item = index;
 this.capacity = capacity;
 }

 @Override
 int hash() {
 return Objects.hash(item, capacity);
 }

 @Override
 boolean isEqual(State s) {
 if (s instanceof KnapsackState) {
 KnapsackState state = (KnapsackState) s;
 return item == state.item && capacity == state.capacity;
 }
 return false;
 }

}

KnapsackState.java

• Objects.hash
Useful Method

class Transition<S extends State> {

 private S successor;
 private int decision;
 private double value;

 public Transition(S successor, int decision, double value) {
 this.successor = successor;
 this.decision = decision;
 this.value = value;
 }

 public S getSuccessor() {
 return successor;
 }

 public int getDecision() {
 return decision;
 }

 public double getValue() {
 return value;
 }
}

Transition.java (nothing to implement here)

abstract class Model<S extends State> {

 abstract boolean isBaseCase(S state);

 abstract double getBaseCaseValue(S state);

 abstract S getRootState();

 abstract List<Transition<S>> getTransitions(S state);

 abstract boolean isMaximization();
}

Model

public class Knapsack extends Model<KnapsackState> {
 KnapsackInstance instance;
 KnapsackState root;
 @Override
 boolean isBaseCase(KnapsackState state) { return state.item == instance.n || state.capacity == 0; }
 @Override
 double getBaseCaseValue(KnapsackState state) { return 0; }
 @Override
 List<Transition<KnapsackState>> getTransitions(KnapsackState state) {
 List<Transition<KnapsackState>> transitions = new LinkedList<>();
 // do not take the item
 transitions.add(new Transition<KnapsackState>(
 new KnapsackState(state.item + 1, state.capacity), 0,0));
 // take the item if remaining capacity allows
 if (instance.weight[state.item] <= state.capacity) {
 transitions.add(new Transition<KnapsackState>(
 new KnapsackState(state.item + 1, state.capacity - instance.weight[state.item]),1, instance.value[state.item]));
 }
 return transitions;
 }
 @Override
 KnapsackState getRootState() { return root; }
 @Override
 boolean isMaximization() { return true; }

}

Knapsack(Model).java

public class DynamicProgramming<S extends State> {

 Model<S> model; // the dynamic programming model to solve
 HashMap<State, Double> table; // table to store the best value found for
each state

 public DynamicProgramming(Model<S> model) {
 this.model = model;
 this.table = new HashMap<>();
 }
 public Solution getSolution() {
 // TODO compute the solution for the root state of the model
 }
•}

DynamicProgramming.java

public class Solution {

 private double value;
 private List<Integer> decisions;

 public Solution(double value, List<Integer> decisions) {
 this.value = value;
 this.decisions = decisions;
 }

 public double getValue() {
 return value;
 }

 public List<Integer> getDecisions() {
 return decisions;
 }

 public boolean isValid() {
 return true;
 }

}

Solution.java

HashMap<State, Double> table;

• Start from the root

• Generate the successor of the root and follow the one that has the
same objective value minus the cost of the transition.

• Continue like this until you reach a terminal state.

• By following this path, you record the decisions into the solution.

• You will necessarily retrieve the optimal solution this way

How to recompute the solution from the table

Retrieving the longest path
28

272626

3 4 2

9 12 13 8

18 20 23 22

Dynamic Programming

LINFO2266

Pierre Schaus

